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Abstract 
 
This work provides an in-depth analysis of the expected length of the “Pots & Coins” game via 

analytical, statistical, and simulation techniques.  The goal is to understand how many “cycles” the Pots 
& Coins game (described in detail in the section below) is expected to last.  After an elementary analysis 
of the game by conducting a real-world test, discussing analytical concepts, and observing basic 
transition probabilities for the first few cycles, the game is simulated in Python and output analysis via 
independent replications is used to determine a confidence interval for the expected number of cycles 
the game will last. In addition, the game balance is examined to see if certain players can start the game 
with an advantage based on the order that they play.  

 
 

Background 
 
Description of Pots & Coins Game 

 
As outlined in Project 14 in the ISYE-6644 Spring 2022 Projects list, the Pots & Coins game 

describes a scenario where two players, A and B, each start with 4 coins. The game includes a pot that 
initially contains 2 coins in it.  

 
With player A as the starting player, the players each take turns tossing a 6-sided die. The 

following actions are taken based on the result of the 6-sided die: 

Die Toss Result Action 

1 Nothing 

2 Player takes all coins in pot 

3 Player takes half of the coins in the pot (rounded down) 

4 Player puts a coin in the pot 

5 Player puts a coin in the pot 

6 Player puts a coin in the pot 

The game ends when a player reaches a point where they have 0 coins and need to place a coin in the 
pots after rolling a 4, 5, or 6. This player is considered the game’s loser. 

 
A “cycle” is defined as both players completing their turns, with Player A going first. The 

exception is the final cycle: the final cycle always counts as 1 cycle even if only Player A is able to start 
their turn.  

Game Start Conditions 
                                                      

Player A: 4 Coins Player B: 4 Coins Pot: 2 Coins 



Full Cycle 
 

 
 
 
 
Application Area 
 

This project aims to determine how many cycles, on average, a simple game of Pots & Coins is 
expected to last. This is important because the length of a game is critical in predicting its popularity. A 
game should only take the amount of time necessary to deliver an intended experience1. Players often 
choose games that are worthwhile to play given how much time it takes to finish them. In general, if a 
game can deliver its intended experience in a shorter amount of time, it will be more popular. With a 
straightforward game such as Pots & Coins, an initial guess is that players should be able to complete 
the game in a relatively small number of cycles.  

 
Generally, players will choose to participate in a game if there is motivation. Motivation comes 

from areas such as interest and competency2. Players are more attracted to games in which there is not 
a clear advantage towards one side. This paper will dissect aspects of the game in order to analyze the 
experience for both players.  

 

Elementary Analysis 
 
Before coding the simulation in Python, several methods can be used to perform observations of 

the game to gain a better understanding of potential expected cycle length. 
 

Collecting Real-Life Data 
 
Because Pots & Coins has a straightforward setup, playing the game organically several times is 

the simplest way to begin collecting data. Following the rules of the game, the outcome of 10 games 
was: 

Game 1 2 3 4 5 6 7 8 9 10 Mean Median 

# Cycles 22 8 18 13 13 
5 

(min) 
34 

(max) 
12 7 8 14 12.5 

From these 10 real-life games alone, an observation can be made that there is a right-skewed 
distribution because the mean is greater than the median.  
 
Minimum Number of Cycles 
 

 The probability that Pots & Coins ends at a specific cycle is mainly dependent on whether any 
player enters a cycle with 0 coins. Recall that a player “loses” the game when they have 0 coins and roll 
a 4, 5, or 6. Since both players start with the same number of coins, the minimum number of cycles the 
game will last can be determined by calculating the number of cycles until one player begins a cycle with 
0 coins. This change in states can be represented with the matrix: 

 

Player A Player B Dice Toss Dice Toss Action Action 



 
Player loses  

(rolls a 4, 5, 6) 
Player does not lose 

(rolls a 1, 2, 3) 

# coins player 
has at start 

of cycle 

0 coins 0.5 0.5 

1+ coins 0 1 

 
To determine how long it would take any player to reach 0 cycles, a similar matrix can be used: 

   
-1 change in 
coin count 

0+ change in 
coin count 

  # coins  any 0.5 0.5 

 
At any cycle in the game, it is only possible for a player to decrease their coin count by 1. 

Because a player begins cycle 1 with 4 coins, the smallest number of coins a player can have at the start 
of cycle 2 is 3 coins, at start of cycle 3 is 2 coins, and at start of cycle 4 is 1 coin. Finally, if a player rolls a 
4, 5, or 6 in cycle 4, they would start cycle 5 with 0 coins. Only at 5 cycles would it be possible for a 
player to lose by rolling another 4, 5, or 6. This corroborates the minimum number of cycles from the 
real-life exercise above. This concept is revisited and explored further in the Python simulation results.  
 

Main Findings 
  
Dice Toss 

 
To begin the simulation in Python, the game’s dice toss is generated in Python: 

 

 

 
The formula to simulate the dice toss mechanism can be 
interpreted as “6 multiplied by a random number from a 
random distribution with range 0 to 1.”  To ensure the 
dice toss results follow a uniform distribution (i.e., that 
they represent a fair die), the dice toss is generated 1 
million times. The plot of results should resemble a 
uniform distribution:  
 
 
 
 
The generated dice toss values are captured in a list so that they can also be tested for uniformity using 
the Chi-Square Goodness-of-Fit Test and for independence using a Runs Test “Above and Below the 
Mean.”  
 
 
 
 

def dice_toss(): 

    return math.ceil(6*np.random.uniform())

 

dice_toss_output= [] 

for i in range(0, 1000000): 

  dice_toss_output.append(dice_toss()) 

plt.hist(dice_toss_output, bins=6) 

 



Chi-Square Goodness-of-Fit Test for Uniformity 
 
The null hypothesis for the Chi-Square Goodness-of-Fit Test is that the generated variables are 

uniform. To confirm this, the interval from 1 through 6, which are the possible values from the dice toss 
generator, can be split into k = 6 equal increments. If the variables are uniform, the probability that they 
will fall into each increment is 1/6. Thus, the expected number in each interval should be 1 million 
divided by 6. The differences of the observed and expected variables in each interval are squared and 
summed up, then divided by the expected number to form the Chi-Square test statistic, 𝑋0

2:        

𝑋0
2 =

(𝑂𝑖  − 𝐸𝑖  )2

𝐸𝑖
  , compare to 𝑋𝛼,𝑘−1

2  

where 𝐸𝑖 =
𝑛

𝑘
 and 𝑂𝑖 = 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠 𝑖𝑛 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑠 

If the 𝑋0
2 is less than or equal to 𝑋𝛼,𝑘−1

2  , the null hypothesis of uniformity is not rejected. In Python: 

 
 
 
 
 
 
 
 
The unique generated values are [1 2 3 4 5 6] and the frequency for these values is [166622 166868 

166347 166765 167580 165818]. The 𝑋𝛼,𝑘−1
2 value for 𝛼 = 0.05 and 5 degrees of freedom is 11.07 and 

the 𝑋0
2 is 10.25. Since 10.25 is less than 11.07, the null hypothesis is not rejected, indicating that the 

generated variables are uniform.  
 
Runs Test “Above and Below the Mean” for Independence 

 
The null hypothesis for the Runs Test is that the generated variables are independent. To run a 

Runs Test, the mean for the expected output is calculated and each variable is assigned a positive or 
negative sign depending on whether it is above or below the mean, respectively. A “run” is defined as 
any sequence of observations with the same sign. The number of total runs (n), positive-sign variables 
(n1), and negative-sign variables (n2) are used to calculate the Z-statistic, 𝑍0: 

𝑍0 =
𝐵 − 𝐸(𝐵)

√𝑉𝑎𝑟(𝐵)
 , compare to 𝑧𝛼/2 

where E(B) = 2𝑛1𝑛2/n + 0.5 , 𝑉𝑎𝑟(𝐵) = 2𝑛1𝑛2(2𝑛1𝑛2 − 𝑛)/𝑛2/(𝑛 − 1) 
If the absolute value of 𝑍0is less than or equal to 𝑧𝛼/2, the null hypothesis of independence is not 

rejected. To implement in Python: 
 
 

 
 
 
 
 
 
 
 
 

# find the number of generated dice values in each bucket 1 through 6 

(unique, counts) = np.unique(dice_toss_output, return_counts=True) 

{x:y for x,y in zip(unique, counts)} 

      

#perform Chi-Square Goodness of Fit Test ### 

expected = [1000000/6] * 6 

observed = list(counts) 

 

### Chi-Square test statistic 

stats.chisquare(f_obs=observed, f_exp=expected) 

 

def runsTest(n, n_mean): 

    runs, n1, n2 = 0, 0, 0 

    # Checking for start of new run 

    for i in range(len(n)): 

        # no. of runs 

        if (n[i] >= n_mean and n[i-1] < n_mean) or (n[i] < n_mean and n[i-1] >= n_mean): 

            runs += 1   

        # no. of positive values 

        if (n[i]) >= n_mean: 

            n1 += 1    

        # no. of negative values 

        else: 

            n2 += 1   

    exp_runs = 2*n1*n2/len(n)+0.5 

    std_dev = math.sqrt(2*n1*n2*(2*n1*n2-len(n))/(len(n)**2)/(len(n)-1)) 

    z_stat = (runs-exp_runs)/std_dev 

    return runs, n1, n2, len(n), exp_runs, std_dev, z_stat, abs(z_stat) 

 



The 𝑧𝛼/2 value for 𝛼 = 0.05 is 1.96, and the test Z-statistic is 1.07. Since the absolute value of 1.07 is less 

than 1.96, the null hypothesis that the variables are independent is not rejected. 
 
Game Cycle Simulation 
 

Based on the rules of Pots & Coins, the Python function to track player actions after each dice 
toss can be codified as: 
 

 

 

 

 

 
 
 

 

 

 
 

The following function tracks each game cycle: 
 
 
 
 
 
 
 
 
 
 
One million games are simulated and the outputs of each run are stored in vectors (for brevity, initial 
definitions of these vectors is shown in the Appendix): 
 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 

def player_cycle(player_coins, pot_coins): 

    player_dice_toss = dice_toss() 

    if player_dice_toss == 2: 

        player_coins = player_coins + pot_coins 

        pot_coins = 0 

    elif player_dice_toss == 3: 

        half_pot_coins = math.floor(pot_coins/2) 

        player_coins = player_coins + half_pot_coins 

        pot_coins = pot_coins - half_pot_coins 

    elif player_dice_toss in [4,5,6]: 

        player_coins = player_coins - 1 

        pot_coins = pot_coins + 1 

    return player_coins, pot_coins 

 

def game_cycle(cycles, player_a_coins, player_b_coins, pot_coins): 

    #player a goes first 

    player_a_coins, pot_coins = player_cycle(player_a_coins, pot_coins) 

    #player b goes second  

    if player_a_coins >= 0: 

        player_b_coins, pot_coins = player_cycle(player_b_coins, pot_coins) 

    #add to cycle 

    if player_a_coins >=0 or player_b_coins >= 0: 

        cycles += 1 

    #if game ends do nothing with pot coins 

    if player_a_coins < 0 or player_b_coins < 0: 

        pot_coins = pot_coins - 1 

    return cycles, player_a_coins, player_b_coins, pot_coins 

 

for i in range(0,1000000): 

    cycles = 0 

    player_a_coins = 4 

    player_b_coins = 4 

    pot_coins = 2 

    while player_a_coins >= 0 and player_b_coins >= 0: 

        old_player_a_coins = player_a_coins 

        old_player_b_coins = player_b_coins 

        cycles, player_a_coins, player_b_coins, pot_coins = game_cycle(cycles, 

player_a_coins, player_b_coins, pot_coins) 

        player_a_coins_each_round_vector.append(player_a_coins) 

        player_b_coins_each_round_vector.append(player_b_coins) 

        pot_coins_each_round_vector.append(pot_coins) 

        if old_player_a_coins not in frequency_dictionary_player_a: 

            frequency_dictionary_player_a[old_player_a_coins] = [player_a_coins] 

        else: 

            frequency_dictionary_player_a[old_player_a_coins].append(player_a_coins) 

        if old_player_b_coins not in frequency_dictionary_player_b: 

            frequency_dictionary_player_b[old_player_b_coins] = [player_b_coins] 

        else: 

            frequency_dictionary_player_b[old_player_b_coins].append(player_b_coins) 

    cycle_vector.append(cycles) 

    player_a_coins_vector.append(player_a_coins) 

    player_b_coins_vector.append(player_b_coins) 

    pot_coins_vector.append(pot_coins) 

 



After 1 million runs were completed in Python (see Appendix for full code), observations were 
made about the cycle length outputs from each run using common statistical functions and packages. 

 
The chart to the left showcases the mean cycle 
length per sample size. Sample size in this case 
refers to the number of games simulated. By 
mean square convergence3:  

lim
𝑛→∞

𝐸[(𝑋𝑛 − 𝑋)2] = 0 

In other words, as the number of games 
simulated increases, the mean cycle length will 
converge to the true mean. The chart indicates 
that 1 million simulated games is satisfactory 
to estimate the true cycle length since 
convergence can be observed as sample size 
increases. 
 

Geometric Distribution 
 

After 1 million simulations, the plot to 
the right illustrates that cycle lengths 
resemble a geometric distribution. A 
geometric distribution is a type of discrete 
probability distribution that represents the 
probability of the number of successive 
failures before a success is obtained in a 
Bernoulli trial. A Bernoulli trial is an 
experiment with only two outcomes: success 
and failure. In the case of this game, a player 
losing is considered a “success”. Note that 
due to the nature of the game, the probability 
of success does change from trial to trial. The mean cycle length can be defined as: 

𝐸[𝑋] = 𝜇 =
1 − 𝛿𝑝

𝑝(1 − 𝛿)
 

where p is the probability of success, 𝛿 is the dependency coefficient4 
 
 At any given cycle, the Pots & Coins game changes its probability of success due to the ever-
changing amount of coins in each player’s hand as the game progresses. Because a player can only lose 
if the player has 0 coins in a certain cycle and has to put a coin back in the pot, the probability of a player 
losing will be 

𝑃(𝑃𝑙𝑎𝑦𝑒𝑟 𝑙𝑜𝑠𝑖𝑛𝑔) =  {
0.5 𝑖𝑓 𝑝𝑙𝑎𝑦𝑒𝑟 ℎ𝑎𝑠 0 𝑐𝑜𝑖𝑛𝑠

0 𝑖𝑓 𝑝𝑙𝑎𝑦𝑒𝑟 ℎ𝑎𝑠 𝑔𝑟𝑒𝑎𝑡𝑒𝑟 𝑡ℎ𝑎𝑛 0 𝑐𝑜𝑖𝑛𝑠
 

Also note that the expected number of cycles it will take the player to get to 0 coins is dependent on the 
amount of coins the player has in their hands. The data frame below illustrates the mode number of 
cycles it will take both players to reach 0 coins based on the number of coins currently in their hands. 
The mode was the preferred metric to use here as the mean was too heavily influenced by outliers5. The 
mode was calculated off of a truncated list of 1 million cycle observations for both players as the full list 
was too computationally expensive (the term cycle here refers to all cycles within each game simulated 
for both players). 



 
 
Player Experience 
 

It is important to know the expected game experience for both players. Game balance is 
important so that the game does not give an automatic advantage or disadvantage to certain players6. 
Through simulation, probabilities of going from a certain number of coins to the next in a cycle were 
calculated to determine the differences between players. The matrices on the bottom showcase these 
probabilities.  

 

 

The charts to the left display the 

probability (calculated via simulating 

1 million games) of going from x coins 

to y coins in a cycle. The columns 

represent the number of coins a 

player starts with and the rows 

represent the number of coins a 

player ends with in a cycle. The top 

chart showcases the probability 

matrix for Player A whereas the 

bottom chart showcases the 

probability matrix for Player B. 



While differences in probabilities between players are noticeable, it was determined to be 
insignificant. Note that in games where Player A or Player B wins, they are both estimated to have 3 
coins in hand when the other player loses. Also, via simulation, Player A is estimated to lose 49.8% of the 
time and Player B is estimated to lose 50.2% of the time. The difference in chances to lose is miniscule 
enough that players won’t have a strong preference between going first or second. 
 
Simulation Results 
 

After 1 million simulations of games, the mean number of cycles per game was 17.53 cycles. In 
other words, one of the players can expect to lose at the 17th or 18th cycle. The minimum number of 
cycles from the simulated runs was 5 cycles, which supports the elementary analysis. The maximum 
number of cycles from the simulated runs was 182 cycles. This means that it’s possible that a game of 
Pots & Coins could last for quite a long time!  
 
Output Analysis 

 
Pots & Coins can be considered a finite-horizon simulation where the termination occurs when a 

player loses. To obtain a confidence interval for the expected mean number of cycles, the method of 
independent replications (“IR”) can be used. IR estimates the variance of means by conducting r 
independent simulation runs, each with m observations. 

The estimator for the expected value of sample means is: 

𝑍𝑟
−− =

1

𝑟 
∑ 𝑍𝑖

𝑟

𝑖=1

 

The estimator for the sample variance of sample means is: 

𝑆𝑍
2 =

1

𝑟 − 1
∑(𝑍𝑖 − 𝑍𝑟

−−)2

𝑟

𝑖=1

 

A reasonable estimator for the variance of means is 𝑆𝑍
2/𝑟 and the approximate IR 100(1-𝛼)% 

two-sided confidence interval for the expected value of sample means is: 

𝑍𝑟
−−  ±  𝑡𝛼/2,𝑟−1√𝑆𝑍

2/𝑟  

To implement in Python, the same simulation (m=1000000) is run at 10 different seed values (r=10). The 
simulation code from earlier is run for each new seed value and the means are stored in a list. Those 
means are then evaluated using the IR estimators, which are implemented using this code: 
 

 
 
 
 
 
 
The outputs are 𝑍𝑟

−− =17.54 and 𝑆𝑍
2 = 5.123e-06. The 95% confidence interval for the expected value of 

the sample mean is [17.5343 , 17.5375]. 

def z_samp_var(list_of_means): 

  n = len(list_of_means) 

  z_mean = sum(list_of_means) / n 

  deviations = [(x - z_mean) ** 2 for x in list_of_means] 

  z_sample_var = sum(deviations) / (n-1) 

  return z_mean, z_sample_var, n 

 

z_samp_var(cycle_length_means) 

 

### student-t value at 95% confidence and r-1 degrees of freedom ### 

t = stats.t.ppf(q=1-0.025,df=(r-1)) 

print(cycle_length_means) 

 

### half length of confidence interval ### 

half_length = t*math.sqrt(z_samp_var(cycle_length_means)[1]/r) 

 



Conclusions 
 

From simulation, Pots & Coins proved to be a fair game that should attract many players. In a 
game between two players, it was determined that neither side held an advantage and, thus, had equal 
chances to win. It was also determined that Pots & Coins can be expected to last for an average of 
approximately 17.5 cycles. Because the estimated cycle length is reasonable, players would not be 
deterred from playing. Nevertheless, cycle lengths have a long tail, so two players who expect a 
relatively short game may be surprised to end up in that long tail and encounter a game that lasts for 
hundreds of cycles! 

 
There are many methods that can be used to further iterate on this project. For example, a 

similar simulation using identical game rules could be performed in other simulation software systems 
such as ARENA. The results from an ARENA and Python simulations could be used to calculate the 
variance across systems and determine which simulation performs better. The two systems can be 
compared using two-sample confidence intervals for the difference in two normal means. Various 
adjustments can be made to the simulations to see if results are materially affected. More robust and 
complex analytical methods could also be used to cross-verify the simulation results. In general, 
analytical and simulation methods can be used together to make an analysis more sound.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Appendix 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

#import libaries 

import numpy as np 

import math 

import matplotlib.pyplot as plt 

import collections 

import pandas as pd 

from matplotlib.ticker import PercentFormatter 

import random 

import scipy.stats as stats 

import statistics 

#create seed value 

np.random.seed(1) 

#generates 6 sided dice toss 

def dice_toss(): 

    return math.ceil(6*np.random.uniform()) 

#Simulate dice toss 1 million times and make sure it's a uniform distribution 

dice_toss_output= [] 

for i in range(0, 1000000): 

  dice_toss_output.append(dice_toss()) 

plt.hist(dice_toss_output, bins=6) 

plt.title("Histogram of Dice Tosses") 

plt.xlabel('Dice Toss Result') 

plt.ylabel('Frequency') 

plt.show() 

 

## Check that generated dice toss are uniform with the Chi-Square Goodness-of-Test for Uniformity 

### find the number of generated dice values in each bucket 1 through 6 ### 

(unique, counts) = np.unique(dice_toss_output, return_counts=True) 

{x:y for x,y in zip(unique, counts)} 

print("The unique generated values are",(unique, counts)[0]) 

print("The frequency for these values is",(unique, counts)[1]) 

       

### perform Chi-Square Goodness of Fit Test ### 

expected = [1000000/6] * 6 

observed = list(counts) 

 

### Chi-Square test statistic 

print(stats.chisquare(f_obs=observed, f_exp=expected)) 

print("The Chi-Square test statistic for a confidence level of 95% is",stats.chisquare(f_obs=observed, 

f_exp=expected)[0]) 

print("Since",round(stats.chisquare(f_obs=observed, f_exp=expected)[0],2), "is less 

than",round(stats.chi2.ppf(1-.05, df=len(list(unique))-1),2),"we accept the null hypothesis that the 

PRNs are uniform.") 

 

# Check that generated dice toss are uniform with Runs Test "Above and Below the Mean" for 

Independence 

def runsTest(n, n_mean): 

    runs, n1, n2 = 0, 0, 0 

    # Checking for start of new run 

    for i in range(len(n)): 

        # no. of runs 

        if (n[i] >= n_mean and n[i-1] < n_mean) or (n[i] < n_mean and n[i-1] >= n_mean): 

            runs += 1   

        # no. of positive values 

        if (n[i]) >= n_mean: 

            n1 += 1    

        # no. of negative values 

        else: 

            n2 += 1   

    exp_runs = 2*n1*n2/len(n)+0.5 

    std_dev = math.sqrt(2*n1*n2*(2*n1*n2-len(n))/(len(n)**2)/(len(n)-1)) 

    z_stat = (runs-exp_runs)/std_dev 

    return runs, n1, n2, len(n), exp_runs, std_dev, z_stat, abs(z_stat) 

print(runsTest(dice_toss_output, statistics.mean(dice_toss_output))) 

print("The z-quantile for a confidence level of 95% is 1.96") 

print("The test Z-statistic is", runsTest(dice_toss_output, statistics.mean(dice_toss_output))[6]) 

print("Since the absolute value of the test Z-statistic",round(runsTest(dice_toss_output, 

statistics.mean(dice_toss_output))[7],2),"is less than 1.96, we accept the null hypothesis that the 

PRNs are independent.") 

 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

#function for a player's turn 

def player_cycle(player_coins, pot_coins): 

    player_dice_toss = dice_toss() 

    if player_dice_toss == 2: 

        player_coins = player_coins + pot_coins 

        pot_coins = 0 

    elif player_dice_toss == 3: 

        half_pot_coins = math.floor(pot_coins/2) 

        player_coins = player_coins + half_pot_coins 

        pot_coins = pot_coins - half_pot_coins 

    elif player_dice_toss in [4,5,6]: 

        player_coins = player_coins - 1 

        pot_coins = pot_coins + 1 

return player_coins, pot_coins 

 

 

def game_cycle(cycles, player_a_coins, player_b_coins, pot_coins): 

    #player a goes first 

    player_a_coins, pot_coins = player_cycle(player_a_coins, pot_coins) 

    #player b goes second  

    if player_a_coins >= 0: 

        player_b_coins, pot_coins = player_cycle(player_b_coins, pot_coins) 

    #add to cycle 

    if player_a_coins >=0 or player_b_coins >= 0: 

        cycles += 1 

    #if game ends do nothing with pot coins 

    if player_a_coins < 0 or player_b_coins < 0: 

        pot_coins = pot_coins - 1 

return cycles, player_a_coins, player_b_coins, pot_coins 

 

 

#simulate 1 million games and store simulation metrics in vectors as needed 

cycle_vector = [] 

player_a_coins_vector = [] 

player_b_coins_vector = [] 

pot_coins_vector = [] 

player_a_start_vector = [] 

frequency_dictionary_player_a = dict() 

frequency_dictionary_player_b = dict() 

player_a_coins_each_round_vector = [] 

player_b_coins_each_round_vector = [] 

pot_coins_each_round_vector = [] 

for i in range(0,1000000): 

    cycles = 0 

    player_a_coins = 4 

    player_b_coins = 4 

    pot_coins = 2 

    while player_a_coins >= 0 and player_b_coins >= 0: 

        old_player_a_coins = player_a_coins 

        old_player_b_coins = player_b_coins 

        cycles, player_a_coins, player_b_coins, pot_coins = game_cycle(cycles, player_a_coins, 

player_b_coins, pot_coins) 

        player_a_coins_each_round_vector.append(player_a_coins) 

        player_b_coins_each_round_vector.append(player_b_coins) 

        pot_coins_each_round_vector.append(pot_coins) 

        if old_player_a_coins not in frequency_dictionary_player_a: 

            frequency_dictionary_player_a[old_player_a_coins] = [player_a_coins] 

        else: 

            frequency_dictionary_player_a[old_player_a_coins].append(player_a_coins) 

        if old_player_b_coins not in frequency_dictionary_player_b: 

            frequency_dictionary_player_b[old_player_b_coins] = [player_b_coins] 

        else: 

            frequency_dictionary_player_b[old_player_b_coins].append(player_b_coins) 

    cycle_vector.append(cycles) 

    player_a_coins_vector.append(player_a_coins) 

    player_b_coins_vector.append(player_b_coins) 

pot_coins_vector.append(pot_coins) 

 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

#calculate mode cycles for player A to get from x coins to 0 coins 

#need to truncate vector as the full vector is too computationally expensive 

player_a_coins_each_round_vector_truncated = player_a_coins_each_round_vector[0:1000000] 

zerolist = np.array([i for i, x in enumerate(player_a_coins_each_round_vector_truncated) if x == 0]) 

zero_frequency_player_a = dict() 

for j in range(1,11): 

  coinlist = np.array([i for i, x in enumerate(player_a_coins_each_round_vector_truncated) if x == j]) 

  for i in coinlist: 

    if j not in zero_frequency_player_a: 

      zero_frequency_player_a[j] = [zerolist[np.argmax(zerolist > i)]-i] 

    else: 

      if zerolist[np.argmax(zerolist > i)] > i: 

        zero_frequency_player_a[j].append(zerolist[np.argmax(zerolist > i)]-i) 

 

#create player A mode df 

player_a_df = pd.DataFrame({k:max(set(v), key=v.count) for k,v in 

zero_frequency_player_a.items()}.items(), columns=['Coins in Hand', 'Mode Cycles Until 0 Coins in 

Hand: Player A']) 

 

#calculate mode cycles for player A to get from x coins to 0 coins 

#need to truncate vector as the full vector is too computationally expensive 

player_b_coins_each_round_vector_truncated = player_b_coins_each_round_vector[0:1000000] 

zerolist = np.array([i for i, x in enumerate(player_b_coins_each_round_vector_truncated) if x == 0]) 

zero_frequency_player_b = dict() 

for j in range(1,11): 

  coinlist = np.array([i for i, x in enumerate(player_b_coins_each_round_vector_truncated) if x == j]) 

  for i in coinlist: 

    if j not in zero_frequency_player_b: 

      zero_frequency_player_b[j] = [zerolist[np.argmax(zerolist > i)]-i] 

    else: 

      if zerolist[np.argmax(zerolist > i)] > i: 

        zero_frequency_player_b[j].append(zerolist[np.argmax(zerolist > i)]-i) 

 

#create player B mode df 

player_a_df = pd.DataFrame({k:max(set(v), key=v.count) for k,v in 

zero_frequency_player_a.items()}.items(), columns=['Coins in Hand', 'Mode Cycles Until 0 Coins in 

Hand: Player A']) 

player_b_df = pd.DataFrame({k:max(set(v), key=v.count) for k,v in 

zero_frequency_player_b.items()}.items(), columns=['Coins in Hand', 'Mode Cycles Until 0 Coins in 

Hand: Player B']) 

#merge the 2 df together 

pd.merge(player_a_df, player_b_df, how='inner', on = 'Coins in Hand').style.hide_index() 

 

#create dictionary of frequencies to get from x coins to y coins 

frequency_dictionary_player_a = 

dict(collections.OrderedDict(sorted(frequency_dictionary_player_a.items()))) 

frequency_dictionary_player_b = 

dict(collections.OrderedDict(sorted(frequency_dictionary_player_b.items()))) 

percent_player_a = dict() 

percent_player_b = dict() 

#populate dictionary 

for i in frequency_dictionary_player_a.keys(): 

    percent_player_a[i] = dict(sorted(collections.Counter(frequency_dictionary_player_a[i]).items())) 

    for j in percent_player_a[i]: 

        percent_player_a[i][j] /= len(frequency_dictionary_player_a[i]) 

        percent_player_a[i][j] *= 100 

for i in frequency_dictionary_player_b.keys(): 

    percent_player_b[i] = dict(sorted(collections.Counter(frequency_dictionary_player_b[i]).items())) 

    for j in percent_player_b[i]: 

        percent_player_b[i][j] /= len(frequency_dictionary_player_b[i]) 

        percent_player_b[i][j] *= 100 

#output Player A matric where rows are starting coins in a cycle and columns are ending coins 

percent_player_a_df = pd.DataFrame(percent_player_a.items())[1].apply(pd.Series).round(decimals = 2) 

percent_player_a_df 

 

#output Player B matric where rows are starting coins in a cycle and columns are ending coins 

percent_player_b_df = pd.DataFrame(percent_player_b.items())[1].apply(pd.Series).round(decimals = 2) 

percent_player_b_df 

#Histogram for cycle lengths 

plt.hist(cycle_vector, bins = 'auto', range = (0, 100)) 

plt.hist(cycle_vector, bins = 'auto', range = (0, 100)) 

plt.xlabel('Cycle Length')  

plt.ylabel('Frequency')  

plt.title("Distribution of Cycle Lengths") 

plt.show() 

 

 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

#randomly select x games (sample sizes) and look to see if mean converges 

sample = [] 

mean = [] 

for i in range(0,1000000, 10000): 

    sample.append(i) 

    mean.append(np.mean(random.sample(cycle_vector, i))) 

data = {'sample_size': sample, 'mean_cycle': mean}   

   

# Create DataFrame   

df = pd.DataFrame(data) 

df 

#plot convergende 

df.plot.line(x='sample_size', y='mean_cycle', title='Expected Cycle Length By Sample Size') 

 

#Probability Player B loses 

len([i for i in player_b_coins_vector if i == -1])/len(player_b_coins_vector) 

 

#Probability Player A loses 

len([i for i in player_a_coins_vector if i == -1])/len(player_a_coins_vector) 

 

#get the expected value for cycles in a game and min/max from all runs 

np.mean(cycle_vector), np.min(cycle_vector), np.max(cycle_vector) 

 

#get the expected value for Player A's ending coins is Player A wins 

np.mean(player_a_coins_vector) 

 

#get the expected value for Player B's ending coins is Player B wins 

np.mean(player_b_coins_vector) 

 

 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

### Output Analysis: use IR to create confidence interval for the expected value of sample mean of 

observations ### 

r = 10 

seed_values = range(2,r+2) 

 

### run simulation at different seeds #### 

cycle_length_means = [] 

 

for s in seed_values: 

  np.random.seed(s) 

  for i in range(0,1000000): 

    cycles = 0 

    player_a_coins = 4 

    player_b_coins = 4 

    pot_coins = 2 

    while player_a_coins >= 0 and player_b_coins >= 0: 

        old_player_a_coins = player_a_coins 

        old_player_b_coins = player_b_coins 

        cycles, player_a_coins, player_b_coins, pot_coins = game_cycle(cycles, player_a_coins, 

player_b_coins, pot_coins) 

        player_a_coins_each_round_vector.append(player_a_coins) 

        player_b_coins_each_round_vector.append(player_b_coins) 

        pot_coins_each_round_vector.append(pot_coins) 

        if old_player_a_coins not in frequency_dictionary_player_a: 

            frequency_dictionary_player_a[old_player_a_coins] = [player_a_coins] 

        else: 

            frequency_dictionary_player_a[old_player_a_coins].append(player_a_coins) 

        if old_player_b_coins not in frequency_dictionary_player_b: 

            frequency_dictionary_player_b[old_player_b_coins] = [player_b_coins] 

        else: 

            frequency_dictionary_player_b[old_player_b_coins].append(player_b_coins) 

    cycle_vector.append(cycles) 

    player_a_coins_vector.append(player_a_coins) 

    player_b_coins_vector.append(player_b_coins) 

    pot_coins_vector.append(pot_coins) 

  cycle_length_means.append(np.mean(cycle_vector)) 

 

### define expected value of sample means and sample variance of sample means ### 

def z_samp_var(list_of_means): 

  n = len(list_of_means) 

  z_mean = sum(list_of_means) / n 

  deviations = [(x - z_mean) ** 2 for x in list_of_means] 

  z_sample_var = sum(deviations) / (n-1) 

  return z_mean, z_sample_var, n 

 

z_samp_var(cycle_length_means) 

 

### student-t value at 95% confidence and r-1 degrees of freedom ### 

t = stats.t.ppf(q=1-0.025,df=(r-1)) 

print(cycle_length_means) 

 

### half length of confidence interval ### 

half_length = t*math.sqrt(z_samp_var(cycle_length_means)[1]/r) 

 

print("The expected value of sample means is",z_samp_var(cycle_length_means)[0]) 

print("The sample variance of sample means is",z_samp_var(cycle_length_means)[1]) 

print("The 95% confidence interval for the expected value of the sample mean is 

(",round(z_samp_var(cycle_length_means)[0]-

half_length,5),",",round(z_samp_var(cycle_length_means)[0]+half_length,5),")") 
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