Estimated Cycles of a Pots & Coins Game Using

Simulation Methods
Georgia Tech - ISYE 6644

Evelyn Shen, Syefira Shofa

Abstract

This work provides an in-depth analysis of the expected length of the “Pots & Coins” game via
analytical, statistical, and simulation techniques. The goal is to understand how many “cycles” the Pots
& Coins game (described in detail in the section below) is expected to last. After an elementary analysis
of the game by conducting a real-world test, discussing analytical concepts, and observing basic
transition probabilities for the first few cycles, the game is simulated in Python and output analysis via
independent replications is used to determine a confidence interval for the expected number of cycles
the game will last. In addition, the game balance is examined to see if certain players can start the game
with an advantage based on the order that they play.

Background

Description of Pots & Coins Game

As outlined in Project 14 in the ISYE-6644 Spring 2022 Projects list, the Pots & Coins game
describes a scenario where two players, A and B, each start with 4 coins. The game includes a pot that
initially contains 2 coins in it.

With player A as the starting player, the players each take turns tossing a 6-sided die. The
following actions are taken based on the result of the 6-sided die:

Die Toss Result Action
1 Nothing
2 Player takes all coins in pot
3 Player takes half of the coins in the pot (rounded down)
4 Player puts a coin in the pot
5 Player puts a coin in the pot
6 Player puts a coin in the pot

The game ends when a player reaches a point where they have 0 coins and need to place a coin in the
pots after rolling a 4, 5, or 6. This player is considered the game’s loser.

A “cycle” is defined as both players completing their turns, with Player A going first. The
exception is the final cycle: the final cycle always counts as 1 cycle even if only Player A is able to start
their turn.

Game Start Conditions

Player A: 4 Coins Player B: 4 Coins Pot: 2 Coins

Full Cycle

Dice Toss

This project aims to determine how many cycles, on average, a simple game of Pots & Coins is
expected to last. This is important because the length of a game is critical in predicting its popularity. A
game should only take the amount of time necessary to deliver an intended experience?. Players often
choose games that are worthwhile to play given how much time it takes to finish them. In general, if a
game can deliver its intended experience in a shorter amount of time, it will be more popular. With a
straightforward game such as Pots & Coins, an initial guess is that players should be able to complete
the game in a relatively small number of cycles.

Player A) Dice Toss

Application Area

Generally, players will choose to participate in a game if there is motivation. Motivation comes
from areas such as interest and competency?. Players are more attracted to games in which there is not
a clear advantage towards one side. This paper will dissect aspects of the game in order to analyze the
experience for both players.

Elementary Analysis

Before coding the simulation in Python, several methods can be used to perform observations of
the game to gain a better understanding of potential expected cycle length.

Collecting Real-Life Data
Because Pots & Coins has a straightforward setup, playing the game organically several times is

the simplest way to begin collecting data. Following the rules of the game, the outcome of 10 games
was:

Game 1 2 3 4 5 6 7 8 9 10 Mean | Median
Cycles 22 8 18 13 13 5 34 12 7 8 14 12.5
(min) | (max)

From these 10 real-life games alone, an observation can be made that there is a right-skewed
distribution because the mean is greater than the median.

Minimum Number of Cycles

The probability that Pots & Coins ends at a specific cycle is mainly dependent on whether any
player enters a cycle with 0 coins. Recall that a player “loses” the game when they have 0 coins and roll
a 4,5, or 6. Since both players start with the same number of coins, the minimum number of cycles the
game will last can be determined by calculating the number of cycles until one player begins a cycle with
0 coins. This change in states can be represented with the matrix:

Player loses Player does not lose

(rollsa 4,5, 6) (rollsa 1, 2, 3)
coins player 0 coins 0.5 0.5
has at start
of cycle 1+ coins 0 1

To determine how long it would take any player to reach 0 cycles, a similar matrix can be used:

-1 change in 0+ change in
coin count coin count

#coins any 0.5 0.5

At any cycle in the game, it is only possible for a player to decrease their coin count by 1.
Because a player begins cycle 1 with 4 coins, the smallest number of coins a player can have at the start
of cycle 2 is 3 coins, at start of cycle 3 is 2 coins, and at start of cycle 4 is 1 coin. Finally, if a player rolls a
4,5, or 6 in cycle 4, they would start cycle 5 with 0 coins. Only at 5 cycles would it be possible for a
player to lose by rolling another 4, 5, or 6. This corroborates the minimum number of cycles from the
real-life exercise above. This concept is revisited and explored further in the Python simulation results.

Main Findings
Dice Toss

To begin the simulation in Python, the game’s dice toss is generated in Python:

6*np.random.uniform())

The formula to simulate the dice toss mechanism can be Histogram of Dice Tosses

interpreted as “6 multiplied by a random number from a 160000 1

random distribution with range 0 to 1.” To ensure the 140000 1
dice toss results follow a uniform distribution (i.e., that 120000 1
they represent a fair die), the dice toss is generated 1 100000 -
million times. The plot of results should resemble a B00OO
uniform distribution: B000D 1

40000 4

20000 4

0 -

1 2 3 4 5 &

The generated dice toss values are captured in a list so that they can also be tested for uniformity using
the Chi-Square Goodness-of-Fit Test and for independence using a Runs Test “Above and Below the
Mean.”

Chi-Square Goodness-of-Fit Test for Uniformity

The null hypothesis for the Chi-Square Goodness-of-Fit Test is that the generated variables are
uniform. To confirm this, the interval from 1 through 6, which are the possible values from the dice toss
generator, can be split into k = 6 equal increments. If the variables are uniform, the probability that they
will fall into each increment is 1/6. Thus, the expected number in each interval should be 1 million
divided by 6. The differences of the observed and expected variables in each interval are squared and
summed up, then divided by the expected number to form the Chi-Square test statistic, X2:

x2 = QB ;El S | compare to XZ k-1

L

where E; = gand 0; = observations in intervals
If the Xg is less than or equal to Xfl,k_1 , the null hypothesis of uniformity is not rejected. In Python:

counts) D . ique (dic >Sss_output, return counts=

X,y in zi

stats.chisquare (f obs served, f exp=expected)

The unique generated values are [1 2 3 4 5 6] and the frequency for these values is [166622 166868
166347 166765 167580 165818]. The Xé'k_lvalue for a = 0.05 and 5 degrees of freedom is 11.07 and
the Xg is 10.25. Since 10.25 is less than 11.07, the null hypothesis is not rejected, indicating that the
generated variables are uniform.

Runs Test “Above and Below the Mean” for Independence

The null hypothesis for the Runs Test is that the generated variables are independent. To run a
Runs Test, the mean for the expected output is calculated and each variable is assigned a positive or
negative sign depending on whether it is above or below the mean, respectively. A “run” is defined as
any sequence of observations with the same sign. The number of total runs (n), positive-sign variables

(n1), and negative-sign variables (n;) are used to calculate the Z-statistic, Z:
__ B-E(B)
Zy = Ok compare to
where E(B) = 2n;n,/n+ 0.5, Var(B) = 2n;n,(2nyn, —n)/n?/(n—1)
If the absolute value of Zyis less than or equal to z, /,, the null hypothesis of independence is not

rejected. To implement in Python:

runsTest (n, n_mea
runs, nl, n2 = 0, 0, O

for i in range(len(n)):

if (n[i] >= n mean and n[i-1] < n mean) or (n[i] < n mean and n[i-1] >= n mean):
runs += 1

if (n[i]) >= n mean:
nl += 1

+= 1
>*nl*n2/len(n)+0.5
. *(2*nl*n2-len(n))/ (len(n)**2)/(len(n)-1))

(ru <p_runs) / _dev
return runs, nl, n2, len(n), exp runs, std dev,

The Zg /2 value for a = 0.05 is 1.96, and the test Z-statistic is 1.07. Since the absolute value of 1.07 is less
than 1.96, the null hypothesis that the variables are independent is not rejected.

Game Cycle Simulation

Based on the rules of Pots & Coins, the Python function to track player actions after each dice
toss can be codified as:

coins = player cycle(player b coins, pot coins)

or player b coins >= 0:

if player a coins
C ns = pc

One million games are simulated and the outputs of each run are stored in vectors (for brevity, initial
definitions of these vectors is shown in the Appendix):

for i in ran

1_round

round_vecto
>oins not in f
tionary playe

old play r b
~eque ~dictio

iona ns].append(player b coi
s)
or.append (player a_ |
(player b coins)

After 1 million runs were completed in Python (see Appendix for full code), observations were
made about the cycle length outputs from each run using common statistical functions and packages.
Expected Cycle Length By Sample Size

— mean_cyce | The chart to the left showcases the mean cycle
length per sample size. Sample size in this case
refers to the number of games simulated. By
mean square convergence?:

16.50 i —X)?1 =
lim E[(X, —X)°] =0

In other words, as the number of games
simulated increases, the mean cycle length will
converge to the true mean. The chart indicates
16.40 that 1 million simulated games is satisfactory
to estimate the true cycle length since
0 200000 400000 00000 200000 convergence can be observed as sample size

sample_size increases.

16.55

16.45

Geometric Distribution

Distribution of Cycle Lengths

After 1 million simulations, the plot to

the right illustrates that cycle lengths o
resemble a geometric distribution. A 60000
geometric distribution is a type of discrete 50000
probability distribution that represents the Z 40000
probability of the number of successive z
failures before a success is obtained in a £ 30000
Bernoulli trial. A Bernoulli trial is an 20000
experiment with only two outcomes: success 10000
and failure. In the case of this game, a player HHH“m [T
losing is considered a “success”. Note that R 0 a0 A g0 100
due to the nature of the game, the probability Cycle Length
of success does change from trial to trial. The mean cycle length can be defined as:
1—-6p
ElX]=u >(1=0)

where p is the probability of success, 6 is the dependency coefficient?

At any given cycle, the Pots & Coins game changes its probability of success due to the ever-
changing amount of coins in each player’s hand as the game progresses. Because a player can only lose
if the player has 0 coins in a certain cycle and has to put a coin back in the pot, the probability of a player
losing will be

0.5 if player has 0 coins
0 if player has greater than 0 coins
Also note that the expected number of cycles it will take the player to get to 0 coins is dependent on the
amount of coins the player has in their hands. The data frame below illustrates the mode number of
cycles it will take both players to reach 0 coins based on the number of coins currently in their hands.
The mode was the preferred metric to use here as the mean was too heavily influenced by outliers®. The
mode was calculated off of a truncated list of 1 million cycle observations for both players as the full list
was too computationally expensive (the term cycle here refers to all cycles within each game simulated
for both players).

P(Player losing) = {

Coins in Hand Mode Cycles Until 0 Coins in Hand: Player A Mode Cycles Until 0 Coins in Hand: Player B

1

2

Player Experience

1

2

It is important to know the expected game experience for both players. Game balance is
important so that the game does not give an automatic advantage or disadvantage to certain players®.
Through simulation, probabilities of going from a certain number of coins to the next in a cycle were
calculated to determine the differences between players. The matrices on the bottom showcase these

probabilities.
-1 0 1 2 3 4 5 6 7 8 9 10
0 5008 2574 740 605 370 269 162 093 065 049 037 028
1 NaN 50.01 26.28 7.91 6.00 369 257 120 085 067 055 0.26
2 NaN MNaN 50.08 2661 820 598 399 192 126 120 052 025
3 NaN NaN NaN 4999 2674 822 709 319 291 105 052 028
4 NaN NaN NaN NaN 4998 2476 1185 899 237 111 063 032
5 MNaN NaN MNaN NaN NaN 4997 2932 1064 576 240 124 067
6 MNaN NaN NaN NaM NaN NaM 50.00 3220 1057 423 198 1.02
7 NaN NaN NaN NaN NaN NaN NaN 50.07 3355 1113 317 2.06
8 NaN NaN NaN MaN NaN NaN NaN NaN 5001 36.37 10.40 3.22
9 MNaN NaN NaN NaN NaN NaN NaN NaN NaN 4996 4112 892
70 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 5001 4999
-1 0 1 2 3 4 5 6 7 8 9 10
0 4961 2638 733 605 376 263 157 096 069 047 033 024
1 NaN 4961 2687 788 6.06 364 254 123 087 057 044 031
2 NaN NaN 4970 2719 832 595 387 202 11 088 067 0.28
3 NaN NaN NaN 4963 2761 874 6.69 3n 179 158 056 027
4 NaN NaN NaN NaN 4956 2845 1079 487 434 111 059 0.30
5 NaN NaN NaN NaN NaN 4911 31.04 10.07 531 244 130 0.73
6 NaN NaN NaN NaN NaN NaN 4833 3355 1033 447 219 114
7 NaN NaN NaN NaN NaN NaN NaN 4767 3670 1067 303 193
8 NaN NaN NaN NaN NaN NaN NaN NaN 4493 4276 941 290
9 NaN NaN NaN NaN NaN NaN NaN NaN NaN 4217 5035 748
10 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 2490 75.10

The charts to the left display the
probability (calculated via simulating
1 million games) of going from x coins
toy coins in a cycle. The columns
represent the number of coins a
player starts with and the rows
represent the number of coins a
player ends with in a cycle. The top
chart showcases the probability
matrix for Player A whereas the
bottom chart showcases the
probability matrix for Player B.

While differences in probabilities between players are noticeable, it was determined to be
insignificant. Note that in games where Player A or Player B wins, they are both estimated to have 3
coins in hand when the other player loses. Also, via simulation, Player A is estimated to lose 49.8% of the
time and Player B is estimated to lose 50.2% of the time. The difference in chances to lose is miniscule
enough that players won’t have a strong preference between going first or second.

Simulation Results

After 1 million simulations of games, the mean number of cycles per game was 17.53 cycles. In
other words, one of the players can expect to lose at the 17" or 18™ cycle. The minimum number of
cycles from the simulated runs was 5 cycles, which supports the elementary analysis. The maximum
number of cycles from the simulated runs was 182 cycles. This means that it’s possible that a game of
Pots & Coins could last for quite a long time!

Output Analysis

Pots & Coins can be considered a finite-horizon simulation where the termination occurs when a
player loses. To obtain a confidence interval for the expected mean number of cycles, the method of
independent replications (“IR”) can be used. IR estimates the variance of means by conducting r
independent simulation runs, each with m observations.

The estimator for the expected value of sample means is:

L

1

Zim=2) %
i=1

The estimator for the sample variance of sample means is:

n
1
S} =) @G- 2)
i=1

r—1
A reasonable estimator for the variance of means is SZ/r and the approximate IR 100(1-a)%
two-sided confidence interval for the expected value of sample means is:

Zy~ £ ta/Z,r—l‘ /Szz/r

To implement in Python, the same simulation (m=1000000) is run at 10 different seed values (r=10). The
simulation code from earlier is run for each new seed value and the means are stored in a list. Those
means are then evaluated using the IR estimators, which are implemented using this code:

/ n

i “ 2 for x in list of means]
sum (dev s (n-1)
z_sample

~length means)

half length = t*math.sgrt(z samp var (cycle

The outputs are Z;~ =17.54 and SZ = 5.123e-06. The 95% confidence interval for the expected value of
the sample mean is [17.5343, 17.5375].

Conclusions

From simulation, Pots & Coins proved to be a fair game that should attract many players. In a
game between two players, it was determined that neither side held an advantage and, thus, had equal
chances to win. It was also determined that Pots & Coins can be expected to last for an average of
approximately 17.5 cycles. Because the estimated cycle length is reasonable, players would not be
deterred from playing. Nevertheless, cycle lengths have a long tail, so two players who expect a
relatively short game may be surprised to end up in that long tail and encounter a game that lasts for
hundreds of cycles!

There are many methods that can be used to further iterate on this project. For example, a
similar simulation using identical game rules could be performed in other simulation software systems
such as ARENA. The results from an ARENA and Python simulations could be used to calculate the
variance across systems and determine which simulation performs better. The two systems can be
compared using two-sample confidence intervals for the difference in two normal means. Various
adjustments can be made to the simulations to see if results are materially affected. More robust and
complex analytical methods could also be used to cross-verify the simulation results. In general,
analytical and simulation methods can be used together to make an analysis more sound.

import numpy as np

import math

import matplotlib.pyplot as plt

import collections

import pandas as pd

from matplotlib.ticker import PercentFormatter
import random

import scipy.stats as stats

import statistics

np.random.seed (1)

dice toss():
return math.ceil (6*np.random.uniform())

dice toss output= []
for i in range (0, 1000000):
dice toss output.append(dice toss())
.hist (dice toss_output, bins=6)
.title ("Hi f Dice
.xlabel ('D
.ylabel ('Fr
.show ()

(unique, counts) = np.unique(dice toss output, return counts=
{x:y for x,y in zip(unique, counts)}

print ("The unique generated values are", (unique, counts) [0]
print ("The fre for these values is", (unique, counts) [1]

expected = [1000000/6] * 6
observed list (counts)

print (stats.chisquare (f obs=observed, f exp=expected))
print ("The Chi-Square test statistic for a confid
f exp=expected) [0])
i ("Since", round(stats.chisquare (f obs=observed, f exp=expected) [0],2), "is le
", round(stats.chi2.ppf (1-.05, df=len(list (unique))-1),2),"we >t the null

form.")

g5

is",stats.chisquare (f_ obs=observed,

runsTest (n, n mean) :
runs, nl, n2 0, 0, 0

for i in range(len(n)):

if (n[i] >= n mean and n[i-1] < n mean) or (n[i] < n mean and n[i-1] >= n mean):
runs += 1

if (n[i]) >= n _mean:
nl += 1

n2 += 1

exp_runs = 2*nl*n2/len(n)+0.5

std dev = math.sqrt (2*nl*n2* (2*nl*n2-len(n))/ (len(n)**2)/(len(n)-1))

z_stat = (runs-exp runs)/std dev

return runs, nl, n2, len(n), exp runs, std dev, z stat, abs(z stat)
print (runsTest (dice toss output, statistics.mean(dice toss output)))
print ("The qué ile for a confidence level of 95% is 1.96")
print ("The t tatistic is", runsTest (dice toss_output, statistics.mean (dice toss output)) [6])
print ("Since the absolute value of the test Z-statistic",round(runsTest (dice toss output,
statistics.mean(dice_ toss output)) [7],2),"is le than 1.96, we accept the null hypothesis
PRNs are independent.")

player cycle(player coins, pot coins) :
player dice toss = dice toss()
if player dice toss == 2:
player coins = player coins + pot coins
pot coins = 0
elif player dice toss == 3:
half pot coins = math.floor (pot coins/2)
player coins = player coins + half pot coins
pot coins = pot coins - half pot coins
elif player dice toss in [4,5,6]:
player coins = player coins - 1
pot coins = pot coins + 1
return player coins, pot coins

game cycle(cycles, player a coins, player b coins, pot coins):
player a coins, pot coins = player cycle(player a coins, pot coins)

if player a coins >= 0:
player b coins, pot coins = player cycle(player b coins, pot coins)

if player a coins >=0 or player b coins >= 0:
cycles += 1

if player a coins < 0 or player b coins < 0:
pot coins = pot coins - 1
return cycles, player a coins, player b coins, pot coins

cycle vector = []
player a coins vector =
player b coins vector
pot coins vector = []
player a start vector =
frequency dictionary player a = dict ()
frequency dictionary player b = dict ()
player a coins each round vector = []
player b coins each round vector = []
pot coins each round vector = []
for i in range(0,1000000) :
cycles = 0
player a coins = 4
player b coins 4
pot _coins = 2
while player a coins >= 0 and player b coins >= 0:
old player a coins = player a coins
old player b coins = player b coins
cycles, player a coins, player b coins, pot coins = game cycle(cycles, player a coins,
player b coins, pot coins)
player a coins each round vector.append(player a coins)
player b coins each round vector.append(player b coins)
pot coins each round vector.append(pot coins)
if old player a coins not in frequency dictionary player a:
frequency dictionary player alold player a coins] = [player a coins]

else:

frequency dictionary player al[old player a coins].append(player a coins)
if old player b coins not in frequency dictionary player b:

frequency dictionary player b[old player b coins] = [player b coins]
else:

frequency dictionary player b[old player b coins].append(player b coins)
cycle vector.append(cycles)
player a coins vector.append(player a coins)
player b coins vector.append(player b coins)
pot coins vector.append (pot coins)

player a coins each round vector truncated = player a coins each round vector[0:1000000]
zerolist = np.array([i for i, x in enumerate(player a coins_ each round vector truncated)
zero frequency player a = dict()
for j in range(1l,11):
coinlist = np.array([i for i, x in enumerate (player a coins each round vector truncated)
for 1 in coinlist:
if j not in zero frequency player a:
zero frequency player a[j] = [zerolist[np.argmax(zerolist > 1)]-1]
else:
if zerolist[np.argmax (zerolist > 1i)] > i:
zero frequency player al[j].append(zerolist[np.argmax (zerolist > i)]-1i)

player a df = pd.DataFrame ({k:max(set(v), key=v.count) for k,v in

zero frequency player a.items()}.items(), columns=['Coins in Hand', 'Mode Cycles Until 0 Coins in
Hand: Player A'l])

player b coins each round vector truncated = player b coins each round vector[0:1000000]
zerolist = np.array([i for i, x in enumerate(player b coins each round vector truncated)
zero_ frequency player b = dict()
for j in range(1l,11):

coinlist = np.array([i for i, x in enumerate (player b coins each round vector truncated)

for i in coinlist:

if j not in zero frequency player b:
zero frequency player b[j] = [zerolist[np.argmax(zerolist > 1)]-1]

f zerolist[np.argmax (zerolist > i)] > i:
zero frequency player b[j].append(zerolist[np.argmax (zerolist > i)]-1i)

player a df = pd.DataFrame ({k:max(set(v), key=v.count) for k,v in
zero frequency player a.items()}.items(), columns=['Coins in Hand',
Hand: Player A'])

player b df = pd.DataFrame ({k:max(set(v), key=v.count) for k,v in
()

zero_frequency player b.items()}.items(), columns=['Coins in Hand', 'Mode

Hand: Player B'])

l

pd.merge (player a df, player b df, how='inner', on = 'Coins in Hand').style.hide index()

frequency dictionary player a =

dict (collections.OrderedDict (sorted (frequency dictionary player a.items())))
frequency dictionary player b =

dict (collections.OrderedDict (sorted (frequency dictionary player b.items())))
percent player a = dict()

percent player b = dict()

for i in frequency dictionary player a.keys():
percent player a[i] = dict (sorted(collections.Counter (frequency dictionary player af[i]).items()))
for j in percent player a[i]:
percent player a[i][]j] /= len(frequency dictionary player a[i])
percent player a[i] [J] *= 100
for i in frequency dictionary player b.keys():
percent player b[i] = dict(sorted(collections.Counter (frequency dictionary player b[i]).items
for j in percent player b[i]:
percent player b[i] [j] /= len(frequency dictionary player b[il)
percent player b[i] [j] *= 100

percent player a df pd.DataFrame (percent player a.items()) [1].apply(pd.Series) .round(decimals
percent player a df

percent player b df pd.DataFrame (percent player b.items()) [1].apply(pd.Series) .round(decimals
percent player b df

.hist (cycle vector, bins = 'z) = (0, 100))
.hist (cycle vector, bins auto (0, 100))
.xlabel ('C >

.ylabel ('E 1€

.title ("Distribut

.show ()

sample

mean

for i in range (0, 10
sample.append (i

mean (random

df = pd.DataFrame (data)
df

ot.line (x='sample

mple, 'me : mean}

i in player b coir

len([i for i in player a

p.mean (cycle vector), np.min

r a coins

.mean (pla

.mean (player b

ins vector if

>ctor), np.m

Cycle

Length By

Sample

Size')

= 10
seed values = range (2, r+2)

cycle length means = []

for s in seed values:
np.random. seed(s)
for i in range (0,1000000) :
cycles = 0
player a coins = 4
player b coins 4
pot coins = 2
while player a coins >= 0 and player b coins >= 0:
old player a coins = player a coins
old player b coins = player b coins
cycles, player a coins, player b coins, pot coins = game cycle (cycles, player a coins,
player b coins, pot coins)
player a coins each round vector.append(player a coins)
player b coins each round vector.append(player b coins)
pot coins each round vector.append(pot coins)
if old player a coins not in frequency dictionary player a:
frequency dictionary player alold player a coins] = [player a coins]
else:
frequency dictionary player alold player a coins].append(player a coins)
if old player b coins not in frequency dictionary player b:
frequency dictionary player b[old player b coins] = [player b coins]
else:
frequency dictionary player b[old player b coins].append(player b coins)
cycle vector.append(cycles)
player a coins vector.append(player a coins)
player b coins vector.append(player b coins)
pot coins vector.append (pot coins)
cycle length means.append (np.mean (cycle vector))

z _samp_var (list of means):
n = len(list of means)
z mean = sum(list of means) / n
deviations = [(x - z mean) ** 2 for x in list of means]
z_sample var = sum(deviations) / (n-1)
return z_mean, z_sample var, n

z samp var (cycle length means)

t = stats.t.ppf(g=1-0.025,df=(r-1)
print (cycle length means)

half length = t*math.sqrt(zisampivar(cycleilengthimeans)[l]/r)

print ("The expec alue o sample ans 1is",z samp var (cycle length means) [0])
=]

print ("The) s is",z_samp var (cycle length means) [1])
print ("The 95% confidence interv: for the expected value of the s e mean is
(", round(z_samp var (cycle length means) [0]-

half length,5),",",round(z_samp var (cycle length means) [0]+half length,5),")")

Standard Normal Table

Y 4 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359
0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753
0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141
03 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.64906 0.6443 0.6480 0.6517
04 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879
0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224
0.6 | 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549
0.7 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852
0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133
0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389
1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621
1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8745 0.8770 0.8790 0.8810 0.8830
1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015
1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9031 0.9147 0.9162 0.9177
14 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319
1.5 | 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441
1.6 0.9452 0.9463 0.9474 0.9484 0.9485 0.9505 0.9515 0.9525 0.9535 0.9545
1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.959% 0.9608 0.9616 0.9625 0.9633
1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706
19 0.9713 0.9718 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767
20 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817
2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857
2.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9890
=23 0.9893 0.98%6 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916
24 | 09918 0.9520 0.9922 0.9924 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936
2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952
2.6 0.9953 0.9955 0.9956 0.9957 0.9958 0.9960 0.9961 0.9962 0.9963 0.9964
2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9974
28 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.9981
29 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986
Percentage Points of the Chi-Square Distribution
Degrees of Probability of a larger value of x*

Freedom 0.99 0.95 0.90 0.75 0.50 0.25 0.10 0.05 0.01

1 0000 0004 0016 0102 0455 132 271 3.84 6.63

2 0020 0103 0211 0575 1386 277 461 5.99 9.21

3 0.115 0.352 0.584 1.212 2.366 411 6.25 7.81 11.34

4 0297 0711 1064 1923 3357 539 7.78 9.49 13.28

5 0554 1145 1610 2675 4.351 6.63 9.24 1107 15.09

6 0872 1635 2204 3455 5.348 7.84 1064 1259 1681

7 1230 2167 2833 4255 6346 9.04 1202 1407 1848

8 1647 2733 3490 5071 7344 1022 1336 1551 2009

9 2088 3325 4168 5899 B343 1139 1468 1692 2167

10 2558 3940 4865 6737 9342 1255 1599 1831 2321

1 3.053 4.575 5.578 7.584 10.341 13.70 17.28 19.68 24.72

12 3571 5226 6304 B438 11340 1485 1855 2103 26.22

13 4107 5892 7042 9299 12340 1598 1981 2236 27.69

14 4660 6571 7790 10165 13339 1712 2106 2368 29.14

15 5229 7.261 BS547 11037 14339 1825 2231 2500 30.58

16 5812 7962 9312 11912 15338 1937 2354 2630 3200

a I i 6.408 B8.672 10.085 12.792 16.338 20.49 24.77 27.59 33.41

18 7015 9390 10865 13675 17.338 2160 2599 2887 34.80

19 7.633 10117 11651 14562 18338 2272 2720 3014 3619

20 B.260 10851 12443 15452 19.337 2383 2841 3141 3757

2 9542 12338 14041 17.240 21337 2604 3081 3392 4029

24 10.856 13.848 15659 19.037 23.337 28.24 3320 3642 42.98

26 12198 15379 17.292 20843 25336 3043 3556 3889 4564

28 13.565 16.928 18.939 22.657 27.336 32.62 37.92 41.34 48.28

30 14953 18493 20,599 24478 29336 34.80 4026 4377 50.89

40 22164 26509 29.051 33660 39335 4562 5180 5576 63.69

50 27.707 34.764 37.689 42.942 49.335 56.33 63.17 67.50 76.15

50 37.485 43188 46459 52294 59335 66.98 7440 79.08 B8.38

TABLE of CRITICAL VALUES for STUDENT'S ¢ DISTRIBUTIONS

Column headings denote probabilities («) above tabulated values.

df. | 040 0.25 0.10 0.05 0.04 | 0.025 | 0.02 0.01 0.005 | 0.0025 | 0.001 | 0.0005
1 0.325 | 1.000 | 3.078 | 6.314 | 7.916 | 12.706 | 15.894 | 31.821 | 63.656 | 127.321|318.289|636.578
2 0.289 | 0816 | 1.886 | 2920 | 3.320 | 4303 | 4849 | 6.965 | 9.925 | 14.089 | 22.328 | 31.600
3 0.277 | 0.765 | 1638 | 2.353 | 2.605 | 3.182 | 3.482 | 4541 | 5841 | T453 | 10.214 | 12.924
4 0.271 | 0.741 | 1533 | 2132 | 2333 | 2.776 | 2.999 | 3.747 | 4604 | 5598 | 7.173 | 8.610
5 0.267 | 0.727 | 1476 | 2.015 | 2191 | 2571 | 2.757 | 3.365 | 4.032 | 4.773 | 5894 | 6.860
6 0.265 | 0.718 | 1.440 | 1943 | 2104 | 2447 | 2612 | 3.143 | 3.707 | 4317 | 5208 | 5.959
7 0.263 | 0.711 | 1415 | 1.895 | 2.046 | 2.365 | 2.517 | 2.998 | 3499 | 4.029 | 4785 | 5.408
8 0.262 | 0.708 | 1.397 | 1.860 | 2.004 | 2.306 | 2449 | 2.896 | 3.355 | 3.833 | 4501 | 5.0¢1
9 0.261 | 0703 | 1383 | 1833 | 1973 | 2262 | 2308 | 2821 | 3250 | 3690 | 4297 | 4781
10 | 0.260 | 0.700 | 1.37 1.812 | 1.948 | 2228 | 2359 | 2764 169 581 | 4144 | 4587
11 0.260 | 0.697 .36 1.796 | 1.92 2201 | 2328 | 2.71¢ 106 AT | 4025 | 4437
12 0.259 | 0.695 356 | 1.782 | 1.912 | 2179 | 2.30« 2.68 055 | 3428 930 | 4.318
13 0.259 | 0.694 350 | 1.771 | 1.899 | 2.160 | 2.282 | 2.650 012 | 3372 | 3.852 | 4.221
14 0.258 | 0.692 345 | 1.761 | 1.887 | 2.145 | 2.264 624 | 2977 | 3326 | 3.787 | 4.140
15 | 0.258 | 0691 | 1.341 | 1.753 | 1878 | 2131 | 2240 | 2602 | 29047 | 3286 | 3.733 | 4073
16 | 0.258 | 0690 | 1.337 | 1.746 | 1.869 | 2120 | 2235 | 2.583 | 2921 | 3.252 | 3.686 | 4.015
17 | 0.257 | 0689 | 1333 | 1.740 | 1.862 | 2110 | 2224 | 2567 | 2808 | 3.222 | 3.646 | 3.965
18 | 0257 | OB8B8 | 1330 | 1734 | 1855 | 2101 | 2214 | 2552 | 2878 | 3197 | 3610 | 3922
19 | 0.257 | 0688 | 1.328 | 1.720 | 1.850 | 2.093 | 2205 | 2.539 | 2861 | 3.174 | 3.579 | 3.883
20 | 0.257 | 0687 | 1.325 | 1.725 | 1844 | 2.086 | 2197 | 2.528 | 2845 | 3.153 | 3.552 | 3.850
21 | 0.257 | 0686 | 1323 | 1.721 | 1.840 | 2.080 | 2189 | 2518 | 2.831 | 3.135 | 3527 | 3.819
22 | 0.256 | 0686 | 1.321 | 1.717 | 1.835 | 2.074 | 2.183 | 2508 | 2819 | 3.119 | 3.505 | 3.792
23 0.256 | 0.685 [1319 | 1.714 | 1.832 | 2.069 | 2177 | 2500 | 2807 | 3.104 | 3.485 | 3.768
24 | 0.256 | 0685 | 1.318 | 1.711 | 1.828 | 2,064 | 2172 | 2492 | 2797 | 3.091 | 3467 | 3.745
25 | 0.256 | 0684 | 1.316 | 1.708 | 1.825 | 2.060 | 2167 | 2485 | 2787 | 3.078 | 3450 | 3.725
26 | 0.256 | 0684 | 1.315 | 1.706 | 1.822 | 2.056 | 2.162 | 2479 | 2.779 | 3.067 | 3.435 | 3.707
27 | 0.256 | 0684 | 1314 | 1.703 | 1.819 | 2,052 | 2158 | 2473 | 2771 | 3.057 | 3421 | 3.680
28 | 0.256 | 0.683 311701 | 1.817 | 2.048 | 2.154 | 2467 | 2763 | 3.047 408 B74
29 | 0.256 | 0.683 1] 1699 | 1.814 | 2.045 | 2.150 462 756 | 3.038 .396 .B60
30 | 0.256 | 0683 310 | 1.697 | 1.812 | 2.042 | 2.147 457 750 | 3030 | 3.385 646
31 | 0.256 | 0682 | 1.309 | 1696 | 1.810 | 2.040 | 2144 | 2453 | 2744 | 3022 | 3.375 | 3633
32 | 0.255 | 0682 | 1309 | 1694 | 1808 | 2.037 | 2141 | 2449 | 2738 | 3.015 | 3.365 | 3622
33 | 0.255 | 0682 | 1308 | 1692 | 1.806 | 2.035 | 2138 | 2445 | 2733 | 3.008 | 3.356 | 3611
34 | 0.255 | 0682 | 1307 | 1691 | 18056 | 2032 | 2136 | 2441 | 2728 | 3.002 | 3348 | 3.601
35 | 0.255 | 0682 | 1.306 | 1690 | 1.803 | 2.030 | 2133 | 2438 | 2724 | 2996 | 3.340 | 3.591
36) 0.255 | 0.GB1 | 1.306 | 1.688 | 1.802 | 2.028 | 2131 | 2434 | 2719 | 2990 | 3.333 | 3.582
37 | 0.255 | 0.681 305 | 1.687 | 1.800 | 2.026 | 2129 | 2431 | 2715 | 2985 | 3.326 | 3.574
38 | 0.255 | 0.681 304 | 1686 | 1.799 | 2.024 | 2127 | 2429 | 2712 | 2980 | 3.319 | 3.566
39 | 0.255 | 0.681 304 | 1.685 | 1.798 | 2.023 | 2125 | 2426 | 2.708 | 2976 | 3.31 3.558
40 | 0.255 | 0681 | 1.303 | 1684 | 1.796 | 2.021 | 2123 | 2.423 | 2704 | 2971 | 3.307 | 3.551
60 | 0.254 | 0679 | 1.296 | 1671 | 1.781 | 2.000 | 2.099 | 2390 | 2660 | 2915 | 3.232 | 3460
B0 | 0.254 | 0678 | 1.292 | 1664 | 1.773 | 1.990 | 2.088 | 2374 | 2639 | 2887 | 3.195 | 3416
100 | 0.254 | 0677 | 1.290 | 1660 | 1.760 | 1.984 | 2081 | 2.364 | 2626 | 2871 | 3.174 | 3.390
120 | 0.254 | O6B77 | 1289 | 1658 | 1.766 | 1.980 | 2076 | 2358 | 2617 | 2860 | 3.160 | 3.373
140 | 0254 | 0676 | 1288 | 1656 | 1.763 | 1977 | 2073 | 2353 | 2611 | 2852 | 3.149 | 3.361
160 | 0.254 | 0676 | 1287 | 1654 | 1.762 | 1975 | 2071 | 2350 | 2607 | 2847 | 3.142 | 3.352
180 | 0.254 | 0676 | 1.286 | 1653 | 1.761 1973 | 2.069 | 2347 | 2603 | 2842 | 3136 | 3.345
200 | 0.254 | 0676 | 1.286 | 1653 | 1.760 | 1.972 | 2.067 | 2.345 | 2601 | 2.838 | 3.131 | 3.340
250 | 0.254 | 0675 | 1.285 | 1.651 | 1.758 | 1.969 | 2.065 | 2.341 | 2.596 | 2.832 | 3.123 | 3.330
inf | 0.253 | 0.674 | 1282 | 1645 | 1.751 | 1.960 | 2.054 | 2326 | 2576 | 2.807 | 3.000 | 3.280

Work Cited

1.

Game Length & Maximizing Time Value in game design: Games precipice.
BoardGameGeek. (n.d.). Retrieved April 24, 2022, from
https://boardgamegeek.com/blogpost/30453/game-length-maximizing-time-value-game-
design

Eng, D. (2020, June 29). The player experience. University XP. Retrieved April 24, 2022,
from https://www.universityxp.com/blog/2019/9/10/the-player-experience

Asymptotic theory. (n.d.). Retrieved April 24, 2022, from
https://www.statlect.com/asymptotic-theory/mean-square-convergence

Traylor, R. (n.d.). The Math Citadel. Retrieved April 24, 2022, from
https://www.themathcitadel.com/a-generalized-geometric-distribution-from-vertically-
dependent-bernoulli-random-variables/

Measures of central tendency. Mean, Mode and Median - Measures of Central Tendency
- When to use with Different Types of Variable and Skewed Distributions | Laerd
Statistics. (n.d.). Retrieved April 25, 2022, from https://statistics.laerd.com/statistical-
guides/measures-central-tendency-mean-mode-median.php

Level 12.0: Game Balance: Game Design Concepts. (n.d.). Retrieved April 25, 2022,
from https://learn.canvas.net/courses/3/pages/level-12-dot-0-game-balance

https://www.statlect.com/asymptotic-theory/mean-square-convergence

