
 

 

 

Fan Power Unit Fault 
Detection Analysis 

Syefira Shofa & Snigdha Kanuparthy 

 

 

 

 

 

 

 

 



Abstract 

In the following investigation we aim to provide a comprehensive analysis of two variants of 
the fan-powered unit in heating ventilation and air conditioning systems conducted on 
behalf of Joulea. In analyzing the fan-powered unit data, we can identify patterns in 
inefficiencies that can lead to fan unit failures. By detecting patterns in inefficiencies as 
they correlate to failures, we may lead to significant savings by reducing the number of 
replacements and/or emergency services required for proper maintenance of these units.  

Our work represents an opportunity for Joulea to augment their existing building energy 
model in order to enhance energy efficiency as it relates to fan-powered units. By 
leveraging these insights, Joulea can offer more comprehensive building anomaly 
detection and a higher caliber product, specifically augmenting the capabilities of the 
envelope assessment. 

By integrating these findings in strategic planning, Joulea can position themselves as a 
market leader with comprehensive and thorough data analysis and industry leading 
machine-learning techniques as it comes to energy efficiency and cost savings within that 
market.  

Background 

A fan-powered unit (FPU) in heating ventilation and air condition (HVAC) system operates 
by utilizing a fan to distribute air, adjusting airflow and supply air temperature to meet the 
heating, cooling, and ventilation requirements of different zones within a building. The two 
types of fan operation in an FPU are Parallel fan-powered variable air volume (VAV) units 
(PFPU) and Series fan-powered VAV units (SFPU). 

The Parallel Fan-Powered Variable Air Volume (PFPU) units work alongside the main air-
handling system, utilizing a separate fan for continuous airflow. The primary system 
adjusts airflow based on temperature needs, providing individual zone control. The "static 
pressure set point" for PFPU is the desired pressure level within the system, measured in 
inches of water gauge (in.w.g.). In this case, the target pressure is 1.40 inches of water 
gauge, with an acceptable range of +/- 0.13 inches. This measurement indicates the force 
needed to effectively distribute air throughout the building. 

Conversely, the Series Fan-Powered Variable Air Volume (SFPU) units operate in series 
with the main air-handling system. They draw air from the main ductwork and distribute it 
through a terminal box, maintaining a constant airflow rate. Temperature regulation is 
achieved through supply air temperature modulation. The "static pressure set point" for 
SFPU is also measured in inches of water gauge. In this case, the target pressure is 0.7 



inches of water gauge, with an acceptable range of +/- 0.13 inches. This measurement 
reflects the force required for optimal performance in SFPU units, particularly in 
environments with stable occupancy levels where temperature control primarily relies on 
adjustments to air temperature. 

 

 

Faults within these fan-processing units can lead to the following adverse outcomes for a 
building:  

1. Reduced Efficiency and Increased Operating Costs: A faulty unit may lead to 
decreased operational efficiency, which in turn leads to an increased carbon 
footprint. The system will overcompensate for the fault by requiring more energy to 
overcome the decreased throughput. This increase in energy results in higher bills 
over the duration of the HVAC lifespan.  

2. Increased Wear and Tear: Faults within units may also shorten the lifespan of the 
units themselves. This decreased lifespan within the HVAC unit will lead to more 
frequent repairs or replacements and a higher cost associated with building 
maintenance.  

3. Regulatory/Compliance Issues: Inefficient HVAC systems may lead to non-
compliance with energy efficiency standards (such as LEED standards) for 
buildings—this can lead to a loss of tax credits, a breach of zoning approval, higher 
utility rates, and a stigma as the value of the building decreases.  

4. System Reliability: In highly regulated environments such as sterile rooms in 
laboratories, intensive care units in hospitals, and highly secure data centers, 
constant environmental conditions are vital—the fluctuations posed by a faulty unit 
can jeopardize critical functions. 

Figure 2: PFPU Schematics Figure 1: SFPU Schematics 



5. Quality of Life and Comfort: Faults in the fan processing unit can lead to uneven 
temperatures, humidity increases, insufficient air circulation, and poor air quality 
due to decreased air circulation. These issues directly impact the comfort and well-
being of building occupants and can result in the loss of productivity due to a less 
than ideal work environment.  

 

The provided FPU data can be used to many ends, including predictive maintenance, fault 
classification, and anomaly detection. As such, many different predictive models can be 
used singly for a task or combined into an ensemble-type model. This project's main 
objective is to deploy a model capable of accurately identifying faults within a given data 
set. The project entails conducting a thorough data analysis on the provided dataset, 
developing models specifically designed to detect and categorize faults within the data, 
and organizing visual representations into a mock dashboard. This dashboard serves as a 
demonstration of the practical business utility of the models and their outputs. The 
project's focus is on enhancing fault detection accuracy and presenting the results in a 
comprehensible and visually accessible manner through the implemented dashboard. 

Data Set 

Data Set Description 

There are two sets of data containing categorizations of a fault-free case or a faulty case 
representing a single fault type at a specific severity level that can be found at 
https://faultdetection.lbl.gov/dataset/simulated-pfpu-sfpu/. The test data was generated 
by simulating a variable air volume (VAV) heating ventilation and air condition system 
(HVAC) system. In the system, an air handling unit (AHU) and four associated fans powered 
VAV terminal units in (FPU) (four parallel FPUs (PFPU) or four series FPUs (SFPU)) in four 
separate zones were simulated in the HVACSIM+ software tool. 

The control sequences were set according to the occupied operation hours (Mon-Fri 
6:00AM-6:00PM) and unoccupied operation hours (Mon-Fri 6:00PM - 6:00AM, Sat-Sun 24-
hour).  

Occupied Hours 

AHU (Air Handling Unit) fan control refers to the methods and systems used to regulate the 
operation of fans. Under occupied hours, a PI controller (a smart system that adjusts how 
fast the supply air fan (SAF) spins to keep the air pressure steady) works with a Varied 
Frequency Driver (VFD), which controls the fan's speed. For the Parallel Fan-Powered 
Variable Air Volume (PFPU) system, the desired pressure level is around 1.40 inches of 

https://faultdetection.lbl.gov/dataset/simulated-pfpu-sfpu/


water gauge, while for the Series Fan-Powered Variable Air Volume (SFPU) system, it's 
around 0.7 inches of water gauge. Also, the return air fan (RAF) is set to run at 80% of the 
supply fan's speed, ensuring balanced airflow throughout the system. 

The AHU supply air temperature control system keeps the air coming out of the HVAC 
system at a comfortable level. It works in different ways depending on whether it needs to 
cool or heat the air. If it's cooling, it uses different methods based on the outside 
temperature and how much cooling is needed. For example, it might use just mechanical 
cooling or a mix of mechanical cooling and bringing in outside air. If it's cold outside, it 
might just be used outside air to cool things down. When it's heating, it adjusts things in a 
similar way, making sure the air isn't too hot or too cold. It's like having a smart system that 
knows just how to make the air feel right for the people inside the building. 

The terminal (zone temperature) control in the system involves two control sequences for 
the FPU and SFPU, each using two PI control loops. The cooling and heating setpoints are 
72 °F and 68 °F, respectively. Both FPUs employ PI control loops to determine reheat coil 
valve position, FPU airflow setpoint, and demand damper motor speed. The minimum 
airflow setpoint is 200 CFM, and the maximum varies for internal, parallel, and series 
FPUs. The PI outputs control reheat coil valve position and damper motor speed based on 
temperature and airflow setpoint differences. 

The low-temperature protection control logic is designed to safeguard the coils in the Air 
Handling Unit (AHU) during extremely low outdoor air temperatures. If the AHU mixed air 
temperature falls below 35°F and remains at that level for 300 seconds, the system 
activates a shutdown mode to prevent coil freezing. The shutdown mode persists until the 
end of the current day, with the system restarting at the beginning of the next day. 

Unoccupied Hours 

During unoccupied hours, the HVAC system operates in two distinct modes: Setback 
mode and Shutdown mode. 

In the Setback mode, the system activates if the air temperature in any of the four zones 
falls below the heating setpoint or exceeds the cooling setpoint. During this mode, the 
system runs for a duration of 30 minutes, like the occupied mode, with specific 
adjustments. The cooling setpoint is set to 85 °F, and the heating setpoint is set to 55 °F. 
Additionally, the economizer is disabled, and the outdoor air (OA) damper is fully closed. 

On the other hand, the Shutdown mode is initiated when all zone temperatures align with 
their setpoints or after being in the setback mode for 30 minutes. In the Shutdown mode, 



both fans and valves cease operation, and the zone airflow demand comes to a complete 
stop, ensuring energy conservation during unoccupied periods. 

Data Set Alteration 

Data Set Vital Characteristics 

The dataset given encompasses three hundred and sixty-five days of simulated data 
measured at one-hundred and six points, with measurements taken in one-minute 
intervals. This resulted in sixty-two files and seventeen gigabytes of data. As such, the 
analysis presented here is performed on a subset of data to accommodate consumer 
commercial hardware. Plans to scale this investigation through MLOps methodology and 
productize the data along with integrations for data streaming will be discussed in the 
future work section.  

The EDA for the data and the data exploration is based on a subset of the data conducted 
with both random sampling and stratified sampling as grouped by time. This allowed us to 
appropriately perform our exploratory data analysis and our machine learning algorithms 
without the inadvertent bias inherent in using the later parts of a time series to predict 
faults, as faulty equipment tends to experience a greater deviation from a standard 
experience near the end of its lifecycle.  

To this end, the data presented in this report was split into four portions for analysis:   

1. Single-fault data: data and time-series analysis with a single scenario—primarily 
used for exploratory data analysis and relative comparative analysis within groups 

2. Double-fault data: data with one fault and a control group, often sampled within-
group (SFPU and PFPU) to increase homogeneity and reduce false conflation 
between scenarios.  

3. Multi-fault data: data with one or more faults, sampled within-group to reduce false 
conflation.  

4. Full-data sample: data sampled across all provided files.  

Exploratory Data Analysis 

Here, exploratory data analysis attempted to gain a preliminary understanding of the faults 
themselves by attempting to look at both measures of centrality and dispersion within the 
data and contextualizing those measures within time. It is important to note that this data 
is structured and rooted in time, and our observations can be used to generate hypotheses 
about the data, which we can hope to answer and incorporate into findings for Joulea to 
use.  



Comparing Centrality and Dispersion 

Ambient environmental factors such as room temperature, and fan heating/cooling set 
points are steady across data and groups, and do not have much variation between them.  

Valve positions and flow rate have low means across groups but high standard deviations, 
and therefore much variability. These observations could indicate potential areas of 
critical impact for predictive algorithms when viewed through a lens of operational 
behavior. 

  

Here, we have included a diagram showing the data distribution for the PFPU-Fault Free 
dataset.  

Our findings demonstrate that the distinct faults within the SFPU and PFPU datasets are 
attributable to variable conditions. In other words, specific fault types appear at first to be 
attributed to an interplay between specific factors. 



Here, we have provided a visual of our data through time—by using the first subset of data 
mentioned earlier, the single-fault dataset, we can visualize the differences between a 
faulty and a fault-free system. Here, we have provided a computation for the SFPU VAV 
restriction as the faulty model, and the SFPU fault-free model.  

When compared on the VAV primary air-flow set point, we observe a wide difference 
between the faulty and fault-free models. However, when observed on the axis shown 
below, namely the heating water coil mixed water temperature measurements we see 
more similar behavior.  

As 
such, we can say that there may be some utility to contextualizing experiences within time, 



making sure to not falsely correlate faults observed in time (correlational data) to faults 
observed because of time based faults (false causational attribution.)  

Based on the data shown above, we have decided to pursue two analysis paths with two 
distinct hypotheses: first, we believe that time is a neither a significant nor a distinct factor 
in our analysis and that we may simply use classification models that ignore time as an 
attribute. Second, that time is indeed a significant feature and predictor in our models, and 
thus all models must be contextualized within time. As such, we have tried to investigate a 
cohort of models that both involve and do not involve time to gain a holistic understanding 
of predictive capabilities.  

Models 

Category I: Time-Series Agnostic Models 

Our first major category of investigation was the time-agnostic model. These models 
derived from the hypothesis that time is not a significant factor in fault—that is, a fan 
processing unit can be faulty at any point in time and is not caused by repeated exposure 
to the stimulus.  

Support Vector Machine 

Support Vector Machines (SVM) excel in managing high-dimensional datasets and 
discerning intricate patterns through effective margin maximization. Their ability to identify 
anomalies within datasets allows them to discern data points that deviate significantly 
from the majority.  Moreover, SVMs exhibit robust capabilities in handling non-linear 
relationships within data, a crucial attribute when addressing the nuanced and non-linear 
behaviors associated with faults in fan-powered units. This quality enhances their 
applicability in fault detection scenarios. A key strength lies in SVMs' ability to determine 
the optimal hyperplane that maximally separates different classes in the feature space. 
This feature is particularly advantageous in fault classification for fan-powered units, 
where a clear boundary often exists between normal and faulty states. SVMs, through their 
precise separation of classes, prove to be effective in discerning and categorizing faults 
based on distinctive patterns within the data. For this project, we implemented linear SVM. 

Data scaling was performed prior to training the SVM model. Scaling ensures that all 
features have a similar influence on the decision-making process, preventing features with 
larger scales from dominating the optimization process. By scaling the data to a common 
scale, the SVM algorithm can converge faster during training and make more accurate 
predictions. This preprocessing step enhances the model's performance, making it more 
robust and effective in handling diverse datasets. 



We utilized Variance Inflation Factor (VIF) for feature selection due to its effectiveness in 
identifying multicollinearity among predictor variables. VIF offers a quantitative 
assessment of the inflation in the variances of regression coefficients caused by 
multicollinearity, with higher values indicating stronger multicollinearity. By eliminating 
features with elevated VIF values (VIF over 5), we aimed to alleviate multicollinearity 
issues, thereby enhancing the stability, interpretability, and predictive performance of our 
model. VIF-based feature selection ensures that redundant features are removed, leading 
to more reliable and accurate predictions while improving our understanding of the 
underlying relationships within the dataset. 

We conducted 5-fold cross-validation to evaluate the performance of the Support Vector 
Machine (SVM) model. This approach partitions the dataset into five subsets, with each 
subset serving as a validation set once while the remaining data is used for training. 
Repeating this process five times ensures that each data point is used for validation 
exactly once, providing a robust assessment of the model's generalization performance. 
For SVM, which relies on finding an optimal hyperplane to separate classes, cross-
validation helps prevent overfitting by assessing the model's performance on multiple 
subsets of the data. Additionally, it provides a more reliable estimate of the model's 
accuracy and generalization capability, crucial for ensuring the SVM's effectiveness in 
handling diverse datasets. 

We provided visuals for feature importance, confusion matrix, and accuracy for each class 
to offer comprehensive insights into the performance and interpretability of our model, 
crucial for informed decision-making in business use cases. Visualizing feature 
importance aids in understanding which features contribute most significantly to 
predictions, facilitating strategic resource allocation and feature engineering efforts. The 
confusion matrix provides a clear overview of the model's classification performance, 
highlighting areas of strengths and weaknesses in class prediction, which can guide 
targeted improvements in product offerings or service delivery. Furthermore, visualizing 
accuracy for each class allows for a nuanced understanding of the model's performance 
across different categories, enabling businesses to prioritize areas requiring attention or 
intervention to optimize outcomes and enhance customer satisfaction. Collectively, these 
visuals empower business stakeholders to make data-driven decisions, optimize 
operational processes, and drive sustainable growth. 

Dataset IV: Randomly sampling across all .csv files 

We separated the data into SFPU and PFPU subsets for SVM analysis to tailor the modeling 
approach to the distinct characteristics of each unit, enhancing model performance and 
interpretability. This separation allows the SVM to learn class-specific patterns and 



decision boundaries, potentially leading to more accurate predictions compared to 
combining the data. Additionally, due to limited computational resources, we randomly 
sampled the data to 100,000 rows while maintaining the original ratio of fault types, 
ensuring computational efficiency without sacrificing representativeness of the dataset. 
This approach enables us to leverage SVM effectively for fault prediction tasks within 
resource constraints, facilitating timely and informed decision-making in fault 
management and mitigation strategies. 

The results of the SVM led to an accuracy prediction of 97% for SFPU and PFPU. In our 
analysis, we found that the reheating coil water flow rate emerged as the most important 
feature for both SFPU and PFPU datasets. A likely hypothesis for this finding is that the 
water flow rate through the reheating coil significantly influences the thermal dynamics 
within the system. In PFPU, where parallel operation is prominent, variations in water flow 
rate can impact the distribution of heat across multiple units, potentially affecting the 
reliability and performance of individual components. Similarly, in SFPU, where series 
operation prevails, fluctuations in water flow rate may influence the overall efficiency of 
heat transfer, potentially leading to overheating or performance degradation in 
downstream components. Thus, maintaining optimal water flow rates through the 
reheating coil emerges as a critical factor for fault prevention and system reliability in both 
PFPU and SFPU configurations. 

 

The SVM's classification was identified to bias towards faults without identifying fault-free 
instances indicates a significant performance flaw, undermining its utility for accurate 
predictions. To rectify this issue, strategies such as dataset rebalancing, feature 
refinement, and hyperparameter tuning could be employed. However, these solutions may 
demand substantial computational resources, which were unavailable in the current 
iteration. Without addressing this imbalance, the model's reliability and usefulness are 
compromised, potentially leading to detrimental consequences in real-world applications. 



 

 

Dataset I: Sampling across one faulty SFPU dataset and the fault free dataset:  

Here, we are presenting our single-fault dataset, in which we compare the SFPU Restricted 
Sample to a fault-free SFPU dataset. We do this to gain a baseline understanding of the 
data and create a binary model in the simplest context. As our prior exploratory data 
analysis revealed, our large variety of faults manifests in distinct and separate features in 
our data. This can muddy predictive accuracy if we claim to exist in a world in which a unit 
can only be “faulty” or “fault-free”  



 

The primary purpose in presenting a stripped-down dataset in comparison to a more 
robust sampling is to show the difference in feature importances and predictive power in 
the SVM paradigm. As we can see, when compared to the more replete dataset the single-
fault dataset is skewed and holds different feature importances; this is indicative of the 
variety in faults themselves as exposed by our EDA and data visualizations.  

 

When we look at the accuracy across folds with this barer dataset, we see that a five-fold 
cross-validation results in an accuracy close to 100% while this is indicative of overfitting, 
when we look at the other datasets in comparison, we see that we still achieve high 
accuracy in a tuned SVM.  

SVM Preliminary Conclusions 

The accuracy of the SVM model remains low when using a sampling from all the data 
provided—if we are to remember business purposes, we must remember that this data is 
to be exported in a dashboard to be presented to a client. This client must make long-term 



business decisions with potentially detrimental consequences based on the data 
presented. As such, a 22% chance of the data being inaccurate, or the data inaccurately 
predicting a fault where there is none may result in undue spending and financial stress for 
the business.  

From a model and data science point of view, based on the data/model split, we can claim 
that rather than fitting to detect faults in a binary manner, our model here optimizes for 
detecting the fault-free scenario for both the SFPU and PFPU dataset. We can conclude 
that based on the relative discrepancies in faulty and fault free data, if we score and rate 
data on a binary scale (faulty in opposition to fault-free) we can see that we tend to select 
and predict for fault-free data, and as we only have one sample we tend to bias towards a 
faulty view.  

 

Random Forest 

Random Forest is a powerful classification tool renowned for its effectiveness in handling a 
wide range of classification tasks. One of its notable strengths lies in its ability to handle 
complex datasets without the need for extensive preprocessing. Unlike many other 
machine learning algorithms, Random Forest can effectively handle missing values, 
outliers, and irrelevant features, reducing the need for extensive data preprocessing steps 
such as imputation and feature scaling. Additionally, Random Forest's ensemble nature, 
comprising multiple decision trees, enables it to capture intricate relationships within the 
data, leading to robust and accurate predictions. Moreover, its parallelized 
implementation allows for efficient computation, making it well-suited for large datasets 
and real-time applications. With its robustness, versatility, and fast computational time, 
Random Forest stands out as a reliable and efficient classification tool suitable for various 
domains and applications. Using the random forest paradigm, we can investigate and tune 
our data and understand which features and parameters within the dataset to see if there 
are certain cohorts of features which contribute the most to faults. 

Dataset IV: Randomly sampling across all .csv files:  

Due to the sheer size of the dataset, we had to trim it down to 100,000 observations. This 
downsizing was necessary to handle the data efficiently without compromising its integrity. 
Despite the reduction, we made sure to maintain the same balance of important 
categories as in the original dataset. By doing this, we ensured that our analysis and 
models remain reliable and applicable to our business needs, even with the scaled-down 
data. 



To maximize the efficacy and specificity of our analysis, the Random Forest algorithm was 
individually applied to both the PFPU and SFPU datasets. This approach was chosen to 
account for potential differences in the operational characteristics and performance 
metrics between the two types of units. By analyzing each data set separately, we could 
uncover unique patterns, trends, and insights specific to PFPU and SFPU units, thereby 
facilitating more targeted and nuanced decision-making processes. Additionally, 
conducting separate analyses allows for a deeper understanding of the distinct factors 
influencing the performance and behavior of each unit type, ultimately leading to more 
accurate and tailored recommendations for optimizing their operation and efficiency. 
Overall, this segmented analysis strategy ensures that our findings are finely tuned to the 
intricacies of each unit type, enhancing the overall effectiveness and relevance of our 
insights in addressing specific operational challenges and objectives. 

The Random Forest model underwent rigorous five-fold cross-validation, due to limitations 
posed by computational resources. However, if computational constraints allow, it's 
advisable for businesses to conduct additional cross-validation iterations to ensure robust 
model evaluation. By increasing the number of cross-validation folds, businesses can 
obtain more reliable estimates of the model's performance and better assess its 
generalization capability.  

Our analysis includes a feature important plot, which succinctly highlights the significance 
of various features on model predictions. This visualization assists businesses in 
pinpointing key variables crucial for fault detection. By identifying these critical factors, 
stakeholders can prioritize resources effectively, streamline decision-making, and 
optimize operational processes. Additionally, the plot enhances transparency and trust in 
the predictive process, facilitating strategic initiatives aimed at improving system reliability 
and efficiency. 

Our analysis includes class accuracy plots, providing a clear visualization of the model's 
accuracy in predicting each class type. These plots offer valuable insights into the 
performance of the classification model across different fault categories, enabling 
stakeholders to assess the model's effectiveness in detecting specific types of faults. The 
business use case and application of class accuracy plots lie in their ability to identify 
strengths and weaknesses in fault prediction, guiding targeted improvements in 
maintenance strategies and operational efficiency. By understanding the model's 
accuracy for each class type, businesses can prioritize resources, implement proactive 
maintenance measures, and optimize system reliability to minimize downtime and 
enhance overall performance. 



The distribution of accuracy score plots from cross-validation provides valuable insights 
into the variability and reliability of the model's performance across different folds or 
iterations. This information is crucial for understanding the robustness of the model and 
assessing its generalization capability. In a business context, these plots help 
stakeholders gauge the stability and consistency of the model's predictions, enabling them 
to make informed decisions about its deployment and reliability in real-world scenarios. By 
identifying any potential fluctuations or inconsistencies in performance, businesses can 
refine their strategies for model deployment, optimize resource allocation, and ensure the 
effectiveness of predictive analytics initiatives. 

Fault vs Fault Free 

The Random Forest algorithm was employed to classify instances as either "fault" or "fault-
free" within the dataset. 

The feature importance plot below showcases that the most influential variables for 
distinguishing between fault and fault-free conditions were VAV discharge air temperature, 
reheating coil leaving water temperature, and room temperature for SFPU while reheating 
coil leaving water temperature, return air humidity, and room temperature were important 
for PFPU.  

For SFPU units, VAV discharge air temperature is critical as it directly influences the air 
distribution within the space being conditioned. Any deviations from the expected 
discharge air temperature could indicate issues with airflow or temperature regulation, 
potentially signaling a fault. Similarly, reheating coil leaving water temperature is essential 
for SFPU units as it affects the efficiency of the heating process, particularly in maintaining 
comfort conditions during colder periods. Room temperature serves as a key indicator of 
occupant comfort and system performance, making it vital for fault detection in SFPU 
units. 

In the case of PFPU units, reheating coil leaving water temperature is crucial for ensuring 
proper heating capacity and comfort control within the space. Return air humidity is 
important as it reflects the moisture levels in the conditioned space, which can impact 
occupant comfort and indoor air quality. Room temperature remains significant for PFPU 
units as well, serving as a primary parameter for maintaining desired thermal conditions. 



 

The class accuracy plots showcase the Random Forest algorithm is highly proficient at 
predicting faults, prioritizing their detection over fault-free instances. This isn’t necessarily 
a negative as it’s more important to detect when things go bad than when everything is 
good for this business use case. 

 

Following five-fold cross-validation, the Random Forest model demonstrated a mean 
accuracy score of 96.64% for SFPU and 96.59% for PFPU. Analysis of the distribution of 
accuracy score plots indicate the model's exceptional accuracy in fault detection, 
showcasing reliability and minimal variance. However, it’s bias towards classification 
towards Faults remains a liability in a business use case as the business cannot efficiently 
track where to send resources to fix the Faults. 

 

Fault Type 



The Random Forest model was run to categorize the different fault types to provide a 
granular analysis, enabling detailed examination of fault characteristics.  

The most important features for detecting fault types in SFPU and PFPU units were 
identified as reheating coil valve position, reheating coil leaving water temperature, and 
VAV damper position. Reheating coil valve position and Reheating coil leaving water 
temperature impact the efficiency of heating processes, crucial for maintaining desired 
comfort levels within conditioned spaces. VAV damper position is instrumental in 
regulating airflow, ensuring optimal distribution of conditioned air. By prioritizing 
monitoring and management of these key parameters, businesses can enhance fault 
detection capabilities and optimize system performance across SFPU and PFPU units, 
ultimately improving operational efficiency and occupant comfort. 

 

Both SFPU and PFPU models exhibit proficiency in detecting several common faults, 
including reheat valve leaking, VAV airflow sensor bias, room temperature sensor bias, and 
VAV damper stuck. The class accuracy chart plays a pivotal role for Joulea, providing 
insights to guide leaders in resource allocation based on the model's detection 
capabilities. Additionally, it highlights areas where the model may fall short in fault 
detection, enabling targeted efforts for further learning and improvement. One note to 
make is that the model detects zone S as a significant factor, showcasing a need to 
separate the model into different zones. 

 

Following five-fold cross-validation, the Random Forest model demonstrated a mean 
accuracy score of 85.75% for SFPU and 81.80% for PFPU. Analysis of the distribution of 



accuracy score plots indicate the model's exceptional accuracy in fault detection, 
showcasing reliability and minimal variance. In its current form, the random forest can 
accurately detect certain fault types but not all and has a hard time detecting when 
something is fault free. Thus, it is still not the most reliable model. 

  

Dataset III:  

Binary classification using PFPU data:  

 



Here, we aimed to understand the discrepancy between binary and multi-class 
classification in a time-agnostic world. As we can see, a smaller sampling of fault sample 
types, including the Room temperature sensor bias at –2C, VAV box fan restricted flow, 
and VAV damper stuck at 100%. We have provided some summary statistics below:  

Metric Score 
Accuracy 98.2% 
Precision 98% 
Recall 100% 
F1 Score 99% 

In this case, reducing the space needed to generate predictions has increased accuracy. 
However, the usefulness of a general-purpose detection is debatable, as knowing there 
may be a fault may not be sufficient to rectify the underlying issue, as the problem space 
has yet to be reduced.  

Performing this analysis in a multi-class forward way, we see the following feature 
importances:  



We also see an accuracy of 99.52%. We see a precision of 88.63%. We have a high score 
despite a train/test split indicating that there is a strong correlation between time and fault.  

Preliminary Conclusions from Random Forest:  

We can see that a smaller dataset causes extreme overfitting in the model case, often 
trending towards false positives in a binary representation of the data. As such, we cannot 
fully align behind the random forest methodology  

 

Gradient Boosting Analysis 

Gradient Boosting is a technique by which a strong classifier is built from many weak 
classification models to boost model performance; the weak classifiers are shallow 
decision trees which are then compounded—typically a gradient boost classifier will 
observe the residuals in a single shallow tree or learner and subsequently fits decision 
trees iteratively to minimize the residuals from previous fittings. A gradient boosted 
classifier—here, a gradient boosted tree offers a highly flexible approach to both 
classification and regression in a dataset composed of heterogeneous features.  



In this approach, due to the volume and size of the data and the relative limitations of 
commercial hardware, we attempt to randomly sample the data for investigations and 
provide relative comparative analysis of various datasets.  

Dataset I: Prediction with two categories: the first investigation was completed by 
randomly sampling from the SFPU dataset—both faulty data from the VAV fan restricted 
flow and fault-free data was presented to the gradient boosting classifier after being 
manually labelled as faulty or fault free. To enhance the sample's quality and avoid biases 
and overfitting, the random sample for this set was taken from the same period, and an 
extra column was added to indicate a faulty or non-faulty unit.  

The gradient boost classifier was used to predict the incidence of a faulty or non-faulty 
unit.  

We attempted to attain parity with other tests: our primary aim in choosing a smaller 
dataset, as with other tests was to create a more manageable dataset to be able to 
compute our data locally.  

Prediction Results  

When this prediction was done without cross-validation we observed overfitting, namely, 
we had a 100% accuracy observed. With cross-validation, we were able to mitigate the 
overfitting observed and saw an average accuracy of around 79% across folds.  

Feature Importance  



 

As we can see, the VAV fan-restricted unit differs from the fault-free unit in the damper 
position. Extrapolating to a more general set of data, we can assume that most faults are 
caused by the tuning and adjustment of a few unit variables.  

Cross Validation 



ROC 
Curve 



 

The ROC curve indicates a good ability to distinguish between the two classes presented.  

It is important to note that for the gradient boosted analysis, classification was done 
independently from the timestamp, meaning that while the time was used as a feature, the 
data was not presented as sequential or ordered in any way.  

Dataset III:  



 

As with other iterations of this dataset, we performed a cross-validated gradient boost, and 
found that the feature importances varied across models. We have also provided a 
summary of the metrics here.  

Metric Score 
Accuracy 99.4% 
Precision 97.1% 
Recall 100% 
F1 Score 99.6% 

The high outputs for each success metric indicate that this dataset is in some way overfit. 

If we are to repeat this data analysis in a binary fashion, we see that even given a train/test 
split, we result in the following metrics, meaning that we continue to see the overfitting.  

Metric Score 
Accuracy 100% 
Precision 100% 
Recall 100% 



F1 Score 100% 

 

Dataset IV:  

The sample of 100k data points in a multi-class classifier resulted in the following metrics.  

Metric Score 
Accuracy 87.9% 
Precision 91.0% 

Recall 94.3% 
F1 Score 89.8% 

 

Conclusions:  

As we can see, the gradient boosted method is highly prone to overfitting, and the time and 
space-based correlation will potentially cause conflation within zone and within date. A 
gradient-boosted decision tree will attempt to minimize entropy at each step, and 
therefore use correlational data between zone and between time in each subset of data to 
create predictions which may not be fully accurate and instead focusing on micropatterns 
or local minima.  

 

Category II: Time-Series-Based Models:  

In our second worldview, we assume that time does play a significant role in the generation 
of faults—in other words, as time increases and goes on, the divergence between a faulty 
unit and a fault-free unit also increases. This apparent difference can be seen as a 
correlation between data, resulting in overfitting in gradient-boosting methods in our 
earlier assessment. By correcting this assumption through modeling for time, we hope to 
gain a model with an increase in predictive accuracy.  

Logistic Regression for Time-Series:  

Logistic regression itself is a binary classification model in which instances are classified 
into a “faulty” or “fault-free” version. Here we assume the underlying probability 
distribution resembles something like the binomal distribution without a heavy class 
imbalance.  

A logistic regression model for time-series data is fundamentally a logistic regression 
model with an allowance for correlated data. A logistic regression model assumes a linear 



but discrete relationship between input and output, or in this case, factors of influence and 
the presence of faulty or fault-free data. A traditional logistic regression assumes that the 
data is independently drawn, but a time-series based logistic regression allows for the 
correlation of data through the presence of legged terms for autocorrelated variables, 
wherein autocorrelation describes and refers to a periodic signal that can be observed 
within a certain interval.  

In this paradigm, we have decided on logistic regression over a multi-class classification 
method because of processing limits on our local infrastructure. We will provide a more 
comprehensive holistic view on architecture in our future work section.  

It is important to note that because of the additional autocorrelation features, we were 
unable to process all 100k responses from the full dataset sample (IV) and have instead 
shown an example analysis on the subsets of data used earlier for additional analytical 
depth.  

Dataset III PFPU Multi-Fault Dataset:  

 

Metric Score 
Accuracy 73.6% 
Precision 73.6% 



Recall 100% 
F1 Score 84.78% 

 

Given the data and summary statistics above, we see that we have some degree of 
accuracy and precision within our system, and have maintained the balance of false 
positives and false negatives through the F1 score, however our AUC is close to 0.5, which 
means that some dimensions of our prediction are no better than random chance—we can 
explain this by realizing that when decomposed to a two-outcome binary system, we have 
a fairly imbalanced dataset; we have more data in a faulty scenario than we do in a fault-
free scenario and therefore are likely to overpredict the faulted case given a logistic 
regression model.  

Dataset I SFPU binary single-fault dataset:  

 



 

Given the metrics and confusion matrix, while we can claim the victory of an improved 
performance when compared to a larger dataset, we see that even given the decoupling of 
the time series term with a lagged autocorrelator, we still have a high degree of correlation 
within the dataset, which is causing overfitting.  

Preliminary Conclusions:  

Ultimately while we were able to take a step in the right direction by reducing correlation 
among the predictor data using a time-series analysis we did not reduce the full scope of 
correlation and were not able to preserve the integrity of the per-class outcomes.  

Spatial Models:  

When attempting the analysis, we saw that models were highly correlated per-zone, 
indicating the need for a temporal assessment. Unfortunately, commercially available 
software has little performant models for spatially correlated data. Industry standard for 
such models is through GIS software.  

 

Final Model Suggestions:  



As previously mentioned, a single-purpose model ignores the conflation between date and 
zone, and as such a spatio-temporal model would incorporate both date and zone data as 
part of a stratified sample, and train models specific to the date and zone.  

The ideal state of this architecture involves each zone  

A proposed architecture is shown below:  

 

Each model is trained per zone per minute and final metrics are displayed per zone and 
updated in a batch.  



The output of each daily model would be a class similarity score calculated by the random 
forest model, averaged across a period with the EMA.  

 

On Scale:  

As previously stated in our report, we see that we have a significant delta between 
computational capabilities and overall requirements for a fully robust project. As such, 
here we propose a scalable cloud architecture that will allow Joulea to break dependency 
on commercially available hardware and instead be able to massively scale and provide 
value for clients who may have more than four zones and a reporting cadence that is more 
granular than the per-minute scale.  



 

Here, we assume that all FPU (Fan Powered Unit) data is stored in an S3 bucket or is 
otherwise loaded with an ETL. We have suggested an AWS Lambda batch job to reduce 
costs overall as streaming data would require per-minute or per-second calculations 
which would incur additional costs for no conferred benefit; that is a streaming solution is 
expensive, and a fault although detected cannot be remedied and monitored in a minute.  

The overall architectural diagram suggests that we use AWS SageMaker services to train a 
new Random Forest model per day per zone. This per-day, per-zone Random Forest will 
predict and align a class for our new data and confer it within the context of the day and 
zone information that we have provided. The model training itself can integrate new ground 



truth data to allow the use of new predictions as each new day of data can produce a new 
model version which can provide us with the most up-to-date insights. Each day’s model is 
then rolled into an EMA (exponential moving average) to provide smoothing and capture 
periodic trends. This EMA also allows the benefit of a periodic predictor that can 
potentially act as a superior lagging indicator to capitalize on trend data and allow clients 
to perform unit maintenance when a downward trend in unit health is observed.  

It is important to note that while AWS has been depicted as the platform of choice, the 
underlying architecture is platform-agnostic and can as easily be ported to Azure or GCP.  

 
Business Recommendations & Deliverables for Joulea:  

While we have proposed a model for Joulea, this model is without benefits if it cannot be 
used in a manner benefiting clients. As such, we recommend that this model is used to 
power insights in an executive level dashboard, as mocked up in a section below.  

We have also created a small slide deck to be shared with the executive team regarding 
full-project implementation, including a Gantt chart and timeline, with key KPIs for each 
product phase to determine overall business value. We hope this will allow Joulea to 
understand the true scope of integrating FPU data with the organization.  





 



 

Here, we have aimed to provide a high-level business plan showing the requirements to 
carry on the project, the proposed timeline, and the overall business KPIs for each project.  

Mock-Up for Final Dashboard:  



This example dashboard considers a paradigm in which we want to measure the current 
unit health in relation to a model’s interpretation of a healthy unit.  

 

Appendix 

 



SVM Dataset I: Prediction with two categories:  

 



 

 

Random Forest Dataset I: Prediction with Two Categories 



 



 



 



LSTM 

AutoCorrelation:  



Ultimately the LSTM model was abandoned as the lack of robust data per day per category-
- our implementation over indexed and overfit to the testing data.  


